• Ta, Ton Viet (Promotive Center for International Education and Research of Agriculture Faculty of Agriculture Kyushu University)
  • Received : 2016.04.30
  • Published : 2017.05.01


This paper is devoted to studying abstract stochastic semilinear evolution equations with additive noise in Hilbert spaces. First, we prove the existence of unique local mild solutions and show their regularity. Second, we show the regular dependence of the solutions on initial data. Finally, some applications to stochastic partial differential equations are presented.


stochastic evolution equations;analytic semigroups;regularity


Supported by : JSPS


  1. Z. Brzezniak, Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal. 4 (1995), no. 1, 1-45.
  2. Z. Brzezniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep. 61 (1997), no. 3-4, 245-295.
  3. R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations 10 (1971), 412-430.
  4. G. Da Prato, F. Flandoli, E. Priola, and M. Rockner, Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift, Ann. Probab. 41 (2013), no. 5, 3306-3344.
  5. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge, 1992.
  6. M. Hairer, An Introduction to Stochastic PDEs, [arXiv:0907.4178] ArXiv e-prints, 78 pages, 2009.
  7. E. Hille, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, New York, 1948.
  8. A Ichikawa, Stability of semilinear stochastic evolution equations, J. Math. Anal. Appl. 90 (1982), no. 1, 12-44.
  9. L. T. H. Nguyen, T. V. Ta , and a Yagi, A quantitative investigations for ODE model describing fish schooling, Sci. Math. Jpn. 77 (2014), 403-413.
  10. L. T. H. Nguyen, T. V. Ta , and A Yagi, Obstacle avoidance patterns and cohesiveness of fish schooling, J. Theoret. Biol. 406 (2016), 116-123.
  11. T. V. Ta , Regularity of solutions of abstract linear evolution equations, Lith. Math. J. 56 (2016), 268-290.
  12. T. V. Ta , L. T. H. Nguyen, and a Yagi, A stochastic differential equation model for foraging swarms, [arXiv:1509.00063v1] ArXiv e-prints, 15 pages, 2015.
  13. T. V. Ta and a Yagi, Abstract stochastic evolution equations in M-type 2 Banach spaces, [arXiv:1410.0144v2] ArXiv e-prints, 71 pages, 2014.
  14. T. V. Ta , Y. Yamamoto, and a Yagi, Strict solutions to stochastic parabolic evolution equations in M-type 2 Banach spaces, 24 pages, to appear in Funkcial. Ekvac.
  15. J. M. A. M. van Neerven, M. C. Veraar, and L. Weis, Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal. 255 (2008), no. 4, 940-993.
  16. J. M. A. M. van Neerven, M. C. Veraar, and L. Weis, Maximal $L^p$-regularity for stochastic evolution equations, SIAM J. Math. Anal. 44 (2012), no. 3, 1372-1414.
  17. A. Yagi, Fractional powers of operators and evolution equations of parabolic type, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 7, 227-230.
  18. A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer, Berlin, 2010.
  19. K. Yosida, On the differentiability and the representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan 1 (1948), 15-21.

Cited by

  1. Maximal regularity for non-autonomous stochastic evolution equations in UMD Banach spaces vol.127, pp.5, 2017,
  2. Non-autonomous stochastic evolution vol.37, pp.8, 2017,