DOI QR코드

DOI QR Code

MAPS PRESERVING η-PRODUCT AB+ηBA ON C-ALGEBRAS

  • Darvish, Vahid (Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran) ;
  • Nazari, Haji Mohammad (Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran) ;
  • Rohi, Hamid (Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran) ;
  • Taghavi, Ali (Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran)
  • Received : 2016.04.24
  • Published : 2017.05.01

Abstract

Let $\mathcal{A}$ and $\mathcal{B}$ be two $C^*$-algebras such that $\mathcal{A}$ is prime. In this paper, we investigate the additivity of maps ${\Phi}$ from $\mathcal{A}$ onto $\mathcal{B}$ that are bijective and satisfy $${\Phi}(A^*B+{\eta}BA^*)={\Phi}(A)^*{\Phi}(B)+{\eta}{\Phi}(B){\Phi}(A)^*$$ for all $A,B{\in}\mathcal{A}$ where ${\eta}$ is a non-zero scalar such that ${\eta}{\neq}{\pm}1$. Moreover, if ${\Phi}(I)$ is a projection, then ${\Phi}$ is a ${\ast}$-isomorphism.

Keywords

maps preserving ${\eta}$-product;${\ast}$-isomorphism;prime $C^*$-algebras

References

  1. M. Bresar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), no. 1, 218-228. https://doi.org/10.1016/0021-8693(89)90285-8
  2. M. Bresar and A. Foner, On ring with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), no. 1-2, 121-134.
  3. J. Cui and C. K. Li, Maps preserving product XY − $YX^*$ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), no. 5-7, 833-842. https://doi.org/10.1016/j.laa.2009.03.036
  4. J. Hakeda, Additivity of Jordan *-maps on $AW^*$-algebras, Proc. Amer. Math. Soc. 96 (1986), no. 3, 413-420.
  5. Z. F. Bai and S. P. Du, Multiplicative Lie isomorphism between prime rings, Comm. Algebra 36 (2008), no. 5, 1626-1633. https://doi.org/10.1080/00927870701870475
  6. Z. F. Bai and S. P. Du, Multiplicative *-Lie isomorphism between factors, J. Math. Anal. Appl. 346 (2008), no. 1, 327-335. https://doi.org/10.1016/j.jmaa.2008.05.077
  7. P. Ji and Z. Liu, Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), no. 1, 335-343. https://doi.org/10.1016/j.laa.2008.07.023
  8. C. Li, F. Lu, and X. Fang, Nonlinear mappings preserving product XY + $YX^*$ on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), no. 5, 2339-2345. https://doi.org/10.1016/j.laa.2012.10.015
  9. L. Liu and G. X. Ji, Maps preserving product $X^*Y$ + $YX^*$ on factor von Neumann algebras, Linear and Multilinear Algebra. 59 (2011), no. 9, 951-955. https://doi.org/10.1080/03081087.2010.495390
  10. F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123-131. https://doi.org/10.1016/S0024-3795(02)00367-1
  11. F. Lu, Jordan maps on associative algebras, Comm. Algebra 31 (2003), no. 5, 2273- 2286. https://doi.org/10.1081/AGB-120018997
  12. F. Lu, Jordan triple maps, Linear Algebra Appl. 375 (2003), 311-317. https://doi.org/10.1016/j.laa.2003.06.004
  13. W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698. https://doi.org/10.1090/S0002-9939-1969-0240129-7
  14. C. R. Mires, Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735. https://doi.org/10.2140/pjm.1971.38.717
  15. C. R. Mires, Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970), 5-63.
  16. L. Molnar, A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229-234. https://doi.org/10.1016/0024-3795(94)00143-X
  17. L. Molnar, On isomorphisms of standard operator algebras, Studia Math. 142 (2000), no. 3, 295-302. https://doi.org/10.4064/sm-142-3-295-302
  18. L. Molnar, Two characterisations of additive *-automorphism of B(H), Bull. Aust. Math. Soc. 53 (1996), no. 3, 391-400. https://doi.org/10.1017/S0004972700017147
  19. X. Qi and J. Hou, Additivity of Lie multiplicative maps on triangular algebras, Linear Multilinear Algebra 59 (2011), no. 4, 391-397. https://doi.org/10.1080/03081080903582094
  20. P. Semrl, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), no. 3, 157-165.
  21. A. Taghavi, Additive mapping on $C^*$-algebras preserving absolute values, Linear Multi-linear Algebra, 60 (2012), no. 1, 33-38. https://doi.org/10.1080/03081087.2010.533271
  22. A. Taghavi, V. Darvish, and H. Rohi, Additivity of maps preserving products $AP{\pm}PA^*$, To appear in Mathematica Slovaca. (arxiv.org/abs/1405.4611v1)

Cited by

  1. Maps preserving triple product A∗B + BA∗ on ∗-algebras pp.1793-7183, 2018, https://doi.org/10.1142/S1793557119500384