DOI QR코드

DOI QR Code

IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS

  • Cho, K.S. (Korea Astronomy and Space Science Institute) ;
  • Marubashi, K. (Korea Astronomy and Space Science Institute) ;
  • Kim, R.S. (Korea Astronomy and Space Science Institute) ;
  • Park, S.H. (Trinity College Dublin, College Green) ;
  • Lim, E.K. (Korea Astronomy and Space Science Institute) ;
  • Kim, S.J. (Korea Astronomy and Space Science Institute) ;
  • Kumar, P. (Korea Astronomy and Space Science Institute) ;
  • Yurchyshyn, V. (Korea Astronomy and Space Science Institute) ;
  • Moon, Y.J. (School of Space Research, Kyung Hee University) ;
  • Lee, J.O. (Korea Astronomy and Space Science Institute)
  • Received : 2016.12.29
  • Accepted : 2017.03.14
  • Published : 2017.04.30

Abstract

We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ($Dst_{min}{\sim}-75nT$) driven by the X1.6 high speed flare-associated CME ($1267km\;s^{-1}$) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ($Dst_{min}{\sim}-223nT$) caused by a CME with moderate speed ($719km\;s^{-1}$) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.

Acknowledgement

Grant : Development of a Solar Coronagraph on International Space Station, Operation of Korea Space Weather Research Center

Supported by : KASI, U.S. Air Fo rce Research Laboratory

References

  1. Berger, M. A. 1984, Rigorous New Limits onMagnetic Helicity Dissipation in the Solar Corona, Geophys. Astrophys. Fluid Dyn., 30, 79 https://doi.org/10.1080/03091928408210078
  2. Chae, J. 2007, Measurements of Magnetic Helicity Injected through the Solar Photosphere, Adv. Space Res., 39, 1700 https://doi.org/10.1016/j.asr.2007.01.035
  3. Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., et al. 2013, Comparison of Helicity Signs in Interplanetary CMEs and Their Solar Source Regions, Sol. Phys., 284, 105 https://doi.org/10.1007/s11207-013-0224-9
  4. Cid, C., Saiz, E., & Cerrato, Y. 2008, Comment on "Interplanetary Conditions Leading to Superintense Geomagnetic Storms (Dst ${\leq}$ -250 nT) during Solar Cycle 23" by E. Echer et al., GRL, 35, L21107. https://doi.org/10.1029/2008GL034731
  5. Dessler, A. J., & Parker, E. N. 1959, Hydromagnetic Theory of Geomagnetic Storms, JGR, 64, 2239 https://doi.org/10.1029/JZ064i012p02239
  6. Echer, E., Gonzalez, W. D., & Tsurutani, B. T. 2008, Interplanetary Conditions Leading to Superintense Geomagnetic Storms (Dst ${\leq}$ -250 nT) during Solar Cycle 23, GRL, 35, L06S03.
  7. Echer, E., Gonzalez, W. D., Tsurutani, B. T., & Gonzalez, A. L. C. 2008, Interplanetary Conditions Causing Intense Geomagnetic Storms (Dst ${\leq}$ -100 nT) during Solar Cycle 23 (1996-2006), JGR, 113, A05221.
  8. Fairfield, D. H., & Cahill, L. J. 1966, Transition Region Magnetic Field and Polar Magnetic Disturbances, JGR, 71, 155 https://doi.org/10.1029/JZ071i001p00155
  9. Fisher, R. R., & Poland, A. I. 1981, Coronal Activity below 2 Solar Radii - 1980 February 15-17, ApJ, 246, 1004 https://doi.org/10.1086/158995
  10. Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. 1994, What is a Geomagnetic Storm?, JGR, 99, 5771 https://doi.org/10.1029/93JA02867
  11. Gonzalez, W. D., Echer, E., Clua-Gonzalez, A. L., & Tsurutani, B. T. 2007, Interplanetary Origin of Intense Geomagnetic Storms (Dst < -100 nT) during Solar Cycle 23, GRL, 34, L06101.
  12. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M. L., & Howard, R. A. 2001, Predicting the 1-AU Arrival Times of Coronal Mass Ejections, JGR, 106, 29207 https://doi.org/10.1029/2001JA000177
  13. Gopalswamy, N., Yashiro, S., & Akiyama, S. 2007, Geoeffectiveness of Halo Coronal Mass Ejections, JGR, 112, A06112.
  14. Gopalswamy, N., Xie, H., Makela, P., Akiyama, S., Yashiro, S., Kauser, M. L., et al. 2010, Interplanetary Shocks Lacking Type II Radio Bursts, ApJ, 710, 1111. https://doi.org/10.1088/0004-637X/710/2/1111
  15. Gopalswamy, N., Makela, P., Akiyama, S., Xie, H., Yashiro, S., & Reinard, A. A. 2013, The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs, Sol. Phys., 284, 17 https://doi.org/10.1007/s11207-012-0215-2
  16. Kim, R.-S., Cho, K.-S., Kim, K.-H., Park, Y.-D., Moon, Y.-J., Yi, Y., et al. 2008, CME Earthward Direction as an Important Geoeffectiveness Indicator, ApJ, 677, 1378 https://doi.org/10.1086/528928
  17. Kim, R.-S., Cho, K.-S., Moon, Y.-J., Dryer, M., Lee, J., Yi, Y., et al. 2010, An Empirical Model for Prediction of Geomagnetic Storms Using Initially Observed CME Parameters at the Sun, JGR, 115, A12108.
  18. Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., & Yashiro, S. 2013, Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta, Sol. Phys., 284, 77 https://doi.org/10.1007/s11207-013-0230-y
  19. Lavraud, B., & Rouillard, A. 2014, Properties and Processes that Influence CME Geo-Effectiveness, Nature of Prominences and Their Role in Space Weather, 300, 273
  20. Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., et al. 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17 https://doi.org/10.1007/s11207-011-9776-8
  21. Liu, Y. D., Yang, Z., Wang, R., Luhmann, J. G., Richardson, J. D., & Lugaz, N. 2014, Sun-to-Earth Characteristics of Two Coronal Mass Ejections Interacting Near 1 AU: Formation of a Complex Ejecta and Generation of a Two-Step Geomagnetic Storm, ApJL, 793, L41 https://doi.org/10.1088/2041-8205/793/2/L41
  22. Lugaz, N., & Farrugia, C. J. 2014, A New Class of Complex Ejecta Resulting from the Interaction of Two CMEs and Its Expected Geoeffectiveness, GRL, 41, 769 https://doi.org/10.1002/2013GL058789
  23. MacQueen, R. M., Eddy, J. A., Gosling, J. T., Hildner, E., Munro, R. H., Newkirk, G. A., et al. 1974, The Outer Solar Corona as Observed from Skylab: Preliminary Results, ApJL, 187, L85 https://doi.org/10.1086/181402
  24. Marubashi, K., & Lepping, R. P. 2007, Long-Duration Magnetic Clouds: a Comparison of Analyses Using Torus- and Cylinder-Shaped Flux Rope Models, Ann. Geophys., 25, 2453 https://doi.org/10.5194/angeo-25-2453-2007
  25. Marubashi, K., & Cho, K.-S. 2015, Non-Uniqueness of the Geometry of Interplanetary Magnetic Flux Ropes Obtained from Model-Fitting, Sun and Geosphere, 10, 119
  26. Marubashi, K., Akiyama, S., Yashiro, S., Gopalswamy, N., Cho, K.-S., & Park, Y.-D. 2015, Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources, Sol. Phys., 290, 1371 https://doi.org/10.1007/s11207-015-0681-4
  27. Meegan, C., Lichti, G., Bhat, P. N., Bissaldi, E., Briggs, M. S., Connaughton, V., et al. 2009, The Fermi Gamma-Ray Burst Monitor, ApJ, 702, 791 https://doi.org/10.1088/0004-637X/702/1/791
  28. Moon, Y.-J., Cho, K.-S., Dryer, M., Kim, Y.-H., Bong, S.-C., Chae, J., et al. 2005, New Geoeffective Parameters of Very Fast Halo Coronal Mass Ejections, ApJ, 624, 414 https://doi.org/10.1086/428880
  29. Pariat, E., D'emoulin, P., & Berger, M. A. 2005, Photospheric Flux Density of Magnetic Helicity, A&A, 439, 1191 https://doi.org/10.1051/0004-6361:20052663
  30. Pevtsov, A. A., & Canfield, R. C. 2001, Solar Magnetic Fields and Geomagnetic Events, JGR, 106, 25191 https://doi.org/10.1029/2000JA004018
  31. Schuck, P. W. 2006, Tracking Magnetic Footpoints with the Magnetic Induction Equation, ApJ, 646, 1358 https://doi.org/10.1086/505015
  32. Sheeley, N. R., Howard, R. A., Michels, D. J., Koomen, M. J., Schwenn, R., Muehlhaeuser, K. H., & Rosenbauer, H. 1985, Coronal Mass Ejections and Interplanetary Shocks, JGR, 90, 163
  33. Smith, C. W., L'Heureux, J., Ness, N. F., Acuna, M. H., Burlaga, L. F., & Scheifele, J. 1998, The ACE Magnetic Fields Experiment, Space Sci. Rev., 86, 613 https://doi.org/10.1023/A:1005092216668
  34. Snyder, C. W., Neugebauer, M., & Rao, U. R. 1963, The Solar Wind Velocity and Its Correlation with Cosmic- Ray Variations and with Solar and Geomagnetic Activity, JGR, 68, 6361 https://doi.org/10.1029/JZ068i024p06361
  35. Song, H., Yurchyshyn, V., Yang, G., Tan, C., Chen, W., & Wang, H. 2006, The Automatic Predictability of Super Geomagnetic Storms from Halo CMEs Associated with Large Solar Flares, Sol. Phys., 238, 141 https://doi.org/10.1007/s11207-006-0164-8
  36. Srivastava, N., & Venkatakrishnan, P. 2004, Solar and Interplanetary Sources of Major Geomagnetic Storms during 1996-2002, JGR, 109, A10103 https://doi.org/10.1029/2003JA010175
  37. Venkatakrishnan, P., & Ravindra, B. 2003, Relationship between CME Velocity and Active Region Magnetic Energy, GRL, 30, SSC 2-1
  38. Wang, Y. M., Ye, P. Z., Wang, S., Zhou, G. P., & Wang, J. X. 2002, A Statistical Study on the Geoeffectiveness of Earth-Directed Coronal Mass Ejections from March 1997 to December 2000, JGR, 107, SSH 2-1
  39. Wang, Y. M., Ye, P. Z., & Wang, S. 2003, Multiple Magnetic Clouds: Several Examples during March-April 2001, JGR, 108, SSH 6-1
  40. Webb, D. F. 2002, CMEs and the Solar Cycle Variation in Their Geoeffectiveness, Proceedings of the SOHO 11 Symposium on From Solar Min to Max, 508, 409
  41. Yermolaev, Y. I., & Yermolaev, M. Y. 2008, Comment on "Interplanetary Origin of Intense Geomagnetic Storms (Dst < -100 nT) during Solar Cycle 23" by W. D. Gonzalez et al., GRL, 35, L01101
  42. Yurchyshyn, V., Wang, H., & Abramenko, V. 2004, Correlation between Speeds of Coronal Mass Ejections and the Intensity of Geomagnetic Storms, Space Weather, 2, S02001
  43. Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., & Gopalswamy, N. 2005, Statistical Distributions of Speeds of Coronal Mass Ejections, ApJ, 619, 599 https://doi.org/10.1086/426129
  44. Zhang, J., Hess, P., & Poomvises, W. 2013, A Comparative Study of Coronal Mass Ejections with and Without Magnetic Cloud Structure near the Earth: Are All Interplanetary CMEs Flux Ropes?, Sol. Phys., 284, 89 https://doi.org/10.1007/s11207-013-0242-7
  45. Zurbuchen, T. H., & Richardson, I. G. 2006, In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, Space Sci. Rev., 123, 31 https://doi.org/10.1007/s11214-006-9010-4

Cited by

  1. Two-Step Filament Eruption During 14 – 15 March 2015 vol.292, pp.6, 2017, https://doi.org/10.1007/s11207-017-1104-5
  2. Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms vol.293, pp.9, 2018, https://doi.org/10.1007/s11207-018-1344-z
  3. Effect of the Initial Shape of Coronal Mass Ejections on 3-D MHD Simulations and Geoeffectiveness Predictions vol.16, pp.6, 2018, https://doi.org/10.1029/2018SW001806