CNN을 적용한 조명변화에 강인한 얼굴인식 연구

Research on Robust Face Recognition against Lighting Variation using CNN

  • 투고 : 2017.02.02
  • 심사 : 2017.04.24
  • 발행 : 2017.04.30


얼굴인식 기술은 지난 수십 년간 연구되어온 분야로서 보안, 엔터테인먼트, 모바일 서비스 등 다양한 영역에서 활용되고 있다. 얼굴인식 기술이 가진 주된 문제점은 밝기, 조명각도, 영상 회전등의 환경적 변화 요소에 따라 인식률이 현저하게 감소된다는 것이다. 따라서 본 논문에서는 최근 많은 계산량을 처리할 수 있는 컴퓨터 하드웨어와 알고리즘의 발전으로 재조명 받고 있는 CNN을 이용해 조명변화에 강인한 얼굴인식 방법을 제안하였다. 이후 성능검증을 위해 기존의 얼굴인식 알고리즘인 PCA, LBP, DCT와 결과 비교를 진행하였으며, 각각 9.82%, 11.6%, 4.54%의 성능 향상을 보였다. 또한 기존 신경망을 적용한 얼굴인식 연구결과 비교에서도 5.24%의 성능 향상을 기록하여 최종 인식률 99.25%를 달성하는 결과를 보였다.


연구 과제 주관 기관 : 순천대학교


  1. L. Yann, B. Yoshua, and G. Hinton, "Deep leaning," Nature, vol. 521, no. 7553, 2015, pp. 436-444.
  2. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in Neural Information Processing Systems, vol. 21, no. 1, 2012, pp. 1097-1105.
  3. D. Gowe, "Distinctive image features from scale-invariant key points," Int. J. of Computer Vision. vol. 60, no. 2, 2004, pp. 91-110.
  4. H. Bay, T. Tuytelaars, and L. Vanl, "Surf: Speeded up robust features," European Conf. on Computer Vision, Heidelberg, Germany, May 2006, pp. 404-417.
  5. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: An open source convolutional architecture for fast feature embedding," In Proc. the 22nd ACM Int Con. on Multimedia, Orlando, USA, Nov. 2014, pp. 675-678.
  6. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," Proc. of Int. Conf. on Learning Representations, San Diego, USA, Jun, 2015 pp. 1-14,
  7. A. Georghiades, P. Nelhumeur, and D. Kriegman, "From few to many: Illumination cone models for face recognition under variable lighting and pose," IEEE Trans Pattern Analysis and Machine Intelligence, vol. 23, no. 6, 2001, pp. 643-660.
  8. L. Luo, M. Swamy, and E. Plotkin, "A modified PCA algorithm for face recognition," In Canadian Conf. on Electrical and Computer Engineering, Quebec, Canada, vol. 1, May 2003, pp. 57-60.
  9. J. Lee, "A Study on Face Recognition System Using LDA and SVM," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 11, 2015, pp. 1307-1314.
  10. A. Petpon and S. Srisuk, "Face Recognition with Local Line Binary Pattern," In Int. Conf. on Image and Graphics, Shanxi, China, vol. 9, Mar. 2009, pp. 533-539.
  11. T. Ahonen, A. Hadid, and M. Pietikainen, "Face description with local binary patterns: application to face recognition," IEEE Trans Pattern Analysis and Machine Intelligence, vol. 28, no. 12, 2006, pp. 2037-2041.
  12. X. Xiaohua, Z. Wei-shi, L. Jianhuang, and Y. Pong C, "Face illumination normalization on large and small scale features," In IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, USA, 2008, pp. 1-5.
  13. H. Lien and A. Jain. "Face modeling for recognition," In Proc. of the Int. Conf. on Image Processing, Thessaloniki, Greece, vol. 2, Oct. 2001, pp. 693-696.
  14. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," In Proc the IEEE, vol. 86, no.11, 1998, pp. 2278-2324.
  15. Y. Lee, "A Comparison and Analysis of Deep Learning Framework," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, 2017, pp. 115-122.