DOI QR코드

DOI QR Code

Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

  • Soto, Inocencio Luevanos (Faculty of Engineering, Science and Architecture, Juarez University of Durango State) ;
  • Rojas, Arnulfo Luevanos (Faculty of Engineering, Science and Architecture, Juarez University of Durango State)
  • Received : 2015.06.25
  • Accepted : 2017.02.10
  • Published : 2017.04.10

Abstract

This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the beam vary along its axis "x", i.e., the flange width "b", the flange thickness "t", the web thickness "e" are constant and the height "d" varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the software "Derive" to obtain some results. The traditional model takes into account only bending deformations, and others authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is that fixed-end moments are calculated for any cross section of the beam "I" using the mathematical formulas.

Keywords

fixed-end moments;beams of I-sections;concentrated load;straight haunches;bending deformations and shear

References

  1. AASHTO (2014), AASHTO LRFD Bridge Design Specifications;(7th Edition), American Association of State and Highway Transportation Officials, Washington, D.C., USA.
  2. Albegmprli, H.M., Cevik, A., Gulsan, M.E. and Kurtoglu, A.E. (2015), "Reliability analysis of reinforced concrete haunched beams shear capacity based on stochastic nonlinear FE analysis", Comput. Concrete, Int. J., 15(2), 259-277. https://doi.org/10.12989/cac.2015.15.2.259
  3. Brown, C.J. (1984), "Approximate stiffness matrix for tapered beams", J. Struct. Eng.-ASCE, 110(12), 3050-3055. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:12(3050)
  4. Cristutiu, I-M., Nunes, D.L. and Dogariu, A.I. (2012), "Experimental study on laterally restrained steel columns with variable I cross sections", Steel Compos. Struct., Int. J., 13(3), 225-238. https://doi.org/10.12989/scs.2012.13.3.225
  5. Gere, J.M. and Goodno, B.J. (2009), Mechanics of Materials, Cengage Learning, New York, NY, USA.
  6. Ghali, A., Neville, A.M. and Brown, T.G. (2003), Structural Analysis: A Unified Classical and Matrix Approach, Taylor & Francis, New York, NY, USA.
  7. Gonzalez Cuevas, O.M. (2007), Analisis Estructural, Limusa, Mexico.
  8. Guldan, R. (1956), Estructuras aporticadas y vigas continuas, El ateneo, Buenos Aires, Argentina.
  9. Fiore, A., Monaco, P. and Raffaele, D. (2012), "Viscoelastic behaviour of non-homogeneous variable-section beams with post-poned restraints", Comput. Concrete, Int. J., 9(5), 357-374. https://doi.org/10.12989/cac.2012.9.5.357
  10. Hibbeler, R.C. (2006), Structural Analysis, Prentice-Hall, Inc., NJ, USA.
  11. Huang, D.M., Zhu, L.D. and Chen, W. (2014), "Power spectra of wind forces on a high-rise building with section varying along height", Wind Struct., Int. J., 18(3), 295-320. https://doi.org/10.12989/was.2014.18.3.295
  12. Just, D.J. (1977), "Plane frameworks of tapering box and Isection", J. Struct. Eng.-ASCE, 103(1), 71-86.
  13. Luevanos-Rojas, A. (2012), "Method of Structural Analysis for Statically Indeterminate Beams", Int. J. Innov. Comput. I., 8(8), 5473-5486.
  14. Luevanos-Rojas, A. (2013a), "Method of structural analysis for statically indeterminate rigid frames", Int. J. Innov. Comput. I., 9(5), 1951-1970.
  15. Luevanos-Rojas, A. (2013b), "Method of structural analysis, taking into account deformations by flexure, shear and axial", Int. J. Innov. Comput. I., 9(9), 3817-3838.
  16. Luevanos-Rojas, A. (2013c), "A mathematical model for rectangular beams of variable cross section of symmetrical parabolic shape for uniformly distributed load", Far East J. Math. Sci., 80(2), 197-230.
  17. Luevanos-Rojas, A. (2014), "A mathematical model for fixed-end moments for two types of loads for a parabolic shaped variable rectangular cross section", Ing. Invest., 34(2), 17-22.
  18. Luevanos-Rojas, A. (2015), "Modelado para vigas de seccion transversal "I" sometidas a una carga uniformemente distribuida con cartelas rectas", Ingenieria Mecanica Tecnologia y Desarrollo, 5(2), 281-292.
  19. Luevanos-Rojas, A. and Montoya-Ramirez, J. (2014), "Mathematical model for rectangular beams of variable cross section of symmetrical linear shape for uniformly distributed load", Int. J. Innov. Comput. I., 10(2), 545-564.
  20. Luevanos-Rojas, A., Luevanos-Rojas, R., Luevanos-Soto, I., Luevanos-Vazquez, R.G. and Ramirez-Luevanos, O.A. (2014), "Mathematical model for rectangular beams of variable cross section of symmetrical linear shape for concentrated load", Int. J. Innov. Comput. I., 10(3), 851-881.
  21. McCormac, J.C. (2007), Structural Analysis: Using Classical and Matrix Methods, John Wiley & Sons, New York, NY, USA.
  22. Medwadowski, S.J. (1984), "Nonprismatic shear beams", J. Struct. Eng.-ASCE, 110(5), 1067-1082. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(1067)
  23. Portland Cement Association (PCA) (1958), Beam Factors and Moment Coefficients for Members of Variable Cross-section, Handbook of Frame Constants, Chicago, IL, USA.
  24. Saffari, H., Mohammadnejad, M. and Bagheripour, M.H. (2012), "Free vibration analysis of non-prismatic beams under variable axial forces", Struct. Eng. Mech., Int. J., 43(5), 561-582. https://doi.org/10.12989/sem.2012.43.5.561
  25. Shooshtari, A. and Khajavi, R. (2010), "An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam elements", Eur. J. Mech. A-Solid., 29(5), 826-836. https://doi.org/10.1016/j.euromechsol.2010.04.003
  26. Schreyer, H.L. (1978), "Elementary theory for linearly tapered beams", J. Struct. Eng.-ASCE, 104(3), 515-527.
  27. Tena-Colunga, A. (1996), "Stiffness formulation for nonprismatic beam elements", J. Struct. Eng.-ASCE, 122(12), 1484-1489. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1484)
  28. Tena-Colunga, A. (2007), Analisis de estructuras con metodos matriciales, Limusa, Mexico.
  29. Tena-Colunga, A. and Zaldo, A. (1994), Ductilidad de marcos con trabes acarteladas y columnas de seccion variable, Reporte FJBS/CIS-94/04, Centro de Investigacion Sismica, AC, Fundacion Javier Barrios Sierra.
  30. Vaidyanathan, R. and Perumal, P. (2005), Structural Analysis, Laxmi Publications (P) LTD, New Delhi, India.
  31. Williams, A. (2008), Structural Analysis, Butterworth Heinemann, New York, NY, USA.
  32. Won, S.G., Bae, S.H., Jeong, W.B., Cho, J.R. and Bae, S.R. (2012), "Forced vibration analysis of damped beam structures with composite cross-section using Timoshenko beam element", Struct. Eng. Mech., Int. J., 43(1), 15-30. https://doi.org/10.12989/sem.2012.43.1.015
  33. Yuksel, S.B. (2009), "Behaviour of symmetrically haunched nonprismatic members subjected to temperature changes", Struct. Eng. Mech., Int. J., 31(3), 297-314. https://doi.org/10.12989/sem.2009.31.3.297
  34. Yuksel, S.B. (2012), "Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5", Struct. Eng. Mech., Int. J., 42(6), 849-866. https://doi.org/10.12989/sem.2012.42.6.849