DOI QR코드

DOI QR Code

Effect of an Organochlorine Insecticide, Endosulfan on Soil Bacteria Community as Evaluated by 16S rRNA Gene Analysis

유기염소계 살충제 엔도설판이 토양세균 군집에 미치는 영향 평가

  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Park, InCheol (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Kim, Wan-Gyu (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • Han, Byeong-Hak (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA)) ;
  • You, Jaehong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA))
  • 안재형 (국립농업과학원 농업미생물과) ;
  • 박인철 (국립농업과학원 농업미생물과) ;
  • 김완규 (국립농업과학원 농업미생물과) ;
  • 한병학 (국립농업과학원 농업미생물과) ;
  • 유재홍 (국립농업과학원 농업미생물과)
  • Received : 2016.10.22
  • Accepted : 2017.02.13
  • Published : 2017.03.31

Abstract

Although a global ban on the use of endosulfan, an organochloline insecticide, has taken effect in mid-2012, it has been still used in several countries, including India and China, and detected in diverse environments in the world due to its relative persistence and semi-volatility. In this study, the effect of endosulfan on soil bacterial community was investigated using 16S rRNA gene pyrosequencing method. When endosulfan was applied to an upland soil at a rate of 100 mg/kg soil (ES soil), the number of operational taxonomic units (OTU) and diversity indices for bacteria initially decreased and gradually recovered to the level of the non-treated soil (NT soil) during an eight-week incubation period. At bacterial phylum level, relative abundances of Proteobacteria and Verrucomicrobia were higher while those of Chloroflexi and Spirochaetes were lower in the ES soil than in the NT soil, suggesting that an endosulfan application affects the bacterial community structure in soil. In the ES soil, the relative abundances of the OTUs affiliated to the genera Sphingomonas and Burkholderia increased in the initial period of incubation while those affiliated to the genera Pseudonocardia and Opitutus increased in the late period of incubation. Because the first three genera contain bacterial strains reported to degrade endosulfan, they are expected to be involved in the degradation of endosulfan, probably one after another.

Keywords

Bacterial community;endosulfan;pyrosequencing;soil

Acknowledgement

Supported by : 국립농업과학원

References

  1. Allison, L. E. (1965) Organic Carbon, p. 1367-1376. In B. C.A. (ed.), Methods of Soil Analysis. Part II, Am. Soc. Agron. Inc. Publ., Madison, Wisconsin, USA.
  2. Basta, T., A. Keck, J. Klein and A. Stolz (2004) Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J. Bacteriol. 186:3862-3872. https://doi.org/10.1128/JB.186.12.3862-3872.2004
  3. Brinati, A., J. M. Oliveira, V. S. Oliveira, M. S. Barros, B. M. Carvalho, L. S. Oliveira, M. E. L. Queiroz, S. L. P. Matta and M. B. Freitas (2016) Low, chronic exposure to endosulfan induces bioaccumulation and decreased carcass total fatty acids in neotropical fruit bats. B. Environ. Contam. Tox. 97:626-631. https://doi.org/10.1007/s00128-016-1910-8
  4. Chin, K. J., W. Liesack and P. H. Janssen (2001) Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division Verrucomicrobia isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51:1965-1968. https://doi.org/10.1099/00207713-51-6-1965
  5. Chun, J., K. Kim, J. H. Lee and Y. Choi (2010) The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10:101. https://doi.org/10.1186/1471-2180-10-101
  6. Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141-D145. https://doi.org/10.1093/nar/gkn879
  7. DeLorenzo, M. E., G. I. Scott and P. E. Ross (1999) Effects of the agricultural pesticides atrazine, deethylatrazine, endosulfan, and chlorpyrifos on an estuarine microbial food web. Environ. Toxicol. Chem. 18:2824-2835. https://doi.org/10.1002/etc.5620181224
  8. Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince and R. Knight (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  9. Fenner, K., S. Canonica, L. P. Wackett and M. Elsner (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752-758. https://doi.org/10.1126/science.1236281
  10. Gupta, S., R. Gupta and S. Sharma (2013) Impact of chemicaland bio-pesticides on bacterial diversity in rhizosphere of Vigna radiata. Ecotoxicology 22:1479-1489. https://doi.org/10.1007/s10646-013-1134-1
  11. Huang, Y. and M. Goodfellow (2012) Genus I. Pseudonocardia. In M. Goodfellow (ed.), Bergey's manual of systematic bacteriology, Phylum XXVI. Actinobacteria phyl. nov., Springer, New York.
  12. Hussain, S., M. Arshad, M. Saleem and A. Khalid (2007) Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 18:731-740. https://doi.org/10.1007/s10532-007-9102-1
  13. Itoh, H., R. Navarro, K. Takeshita, K. Tago, M. Hayatsu, T. Hori and Y. Kikuchi (2014) Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front. Microbiol. 5:457.
  14. Jang, S. K. (2015) Spring greens currently on the market in Gwangju city are generally safe from pesticides. (http://www.gwangnam.co.kr/read.php3?aid=1427881270207794006)
  15. Kataoka, R. and K. Takagi (2013) Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate. Appl. Microbiol. Biotechnol. 97:3285-3292. https://doi.org/10.1007/s00253-013-4774-4
  16. Kavamura, N. V., R. G. Taketani, M. D. Lanconi, F. D. Andreote, R. Mendes and I. Soares de Melo (2013) Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLOS ONE 8:e73606. https://doi.org/10.1371/journal.pone.0073606
  17. Kumar, M., C. V. Lakshmi and S. Khanna (2008) Biodegradation and bioremediation of endosulfan contaminated soil. Bioresour Technol 99:3116-3122. https://doi.org/10.1016/j.biortech.2007.05.057
  18. Lim, S. J., Y. T. Oh, Y. S. Jo, J. H. Ro, G. H. Choi, J. Y. Yang and B. J. Park (2016a) Persistent organic pollutants (POPs) residues in greenhouse soil and strawberry organochlorine pesticides. Korean J. Environ. Agr. 35:6-14. https://doi.org/10.5338/KJEA.2016.35.1.05
  19. Lim, S. J., Y. T. Oh, J. H. Ro, J. Y. Yang, G. H. Choi, S. H. Ryu, B. C. Moon and B. J. Park (2016b) Investigation of resiudal organochlorine pesticides in green Perilla (Perilla frutescens var. japonica Hara) greenhouse soil and its leaves. Korean J. Pestic. Sci. 20:221-227. https://doi.org/10.7585/kjps.2016.20.3.221
  20. Morris, A. D., D. C. G. Muir, K. R. Solomon, R. J. Letcher, M. A. McKinney, A. T. Fisk, B. C. McMeans, G. T. Tomy, C. Teixeira, X. Wang, et al. (2016) Current-use pesticides in seawater and their bioaccumulation in polar bear-ringed seal food chains of the Canadian Arctic. Environ. Toxicol. Chem. 35:1695-1707. https://doi.org/10.1002/etc.3427
  21. NIAST (1988) Methods of soil chemical analysis. National Institute of Agricultural Science and Technology (NIAST), Rural Development Administratio (RDA), Suwon, Korea.
  22. Park, B. J., B. M. Lee, C. S. Kim, K. H. Park, J. H. Kim, H. Kwon, S. W. Park, G. H. Choi and S. J. Lim (2013) Longterm monitoring of pesticide residues in arable soils in Korea. Korean J. Pestic. Sci. 17:283-292. https://doi.org/10.7585/kjps.2013.17.4.283
  23. Pato ka, J., Q. Wu, T. C. C. Franca, T. C. Ramalho, R. Pita and K. Ku a (2016) Clinical aspects of the poisoning by the pesticide endosulfan. Quimica Nova 39:987-994.
  24. Pruesse, E., J. Peplies and F. O. Glockner (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823-1829. https://doi.org/10.1093/bioinformatics/bts252
  25. Quince, C., A. Lanzen, R. Davenport and P. Turnbaugh (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. https://doi.org/10.1186/1471-2105-12-38
  26. Sakakibara, F., K. Takagi, R. Kataoka, H. Kiyota, Y. Sato and S. Okada (2011) Isolation and identification of dieldrin-degrading Pseudonocardia sp. strain KSF27 using a soilcharcoal perfusion method with aldrin trans-diol as a structural analog of dieldrin. Biochem Biophys Res Commun 411:76-81. https://doi.org/10.1016/j.bbrc.2011.06.096
  27. Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, et al. (2009) Introducing mothur: open-source, platform-independent, communitysupported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. https://doi.org/10.1128/AEM.01541-09
  28. Stolz, A. (2009) Molecular characteristics of xenobioticdegrading sphingomonads. Appl Microbiol Biotechnol 81: 793-811. https://doi.org/10.1007/s00253-008-1752-3
  29. Suh, Y. D. (2004) Biodegadation of the endosulfan by Sphingomonas wittichii RW1. J. Korea Soc. Environ. Admin. 10:287-294.
  30. Tellez-Banuelos, M. C., J. Haramati, K. Franco-Topete, J. Peregrina-Sandoval, R. Franco-Topete and G. P. Zaitseva (2016) Chronic exposure to endosulfan induces inflammation in murine colon via ${\beta}$-catenin expression and IL-6 production. J. Immunotoxicol. 13:842-849. https://doi.org/10.1080/1547691X.2016.1206998
  31. Wang, M.-C., Y.-H. Liu, Q. Wang, M. Gong, X.-M. Hua, Y.-J. Pang, S. Hu and Y.-H. Yang (2008) Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biol. Biochem. 40:778-788. https://doi.org/10.1016/j.soilbio.2007.10.012
  32. Weber, J., C. J. Halsall, D. Muir, C. Teixeira, J. Small, K. Solomon, M. Hermanson, H. Hung and T. Bidleman (2010) Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 408:2966-2984. https://doi.org/10.1016/j.scitotenv.2009.10.077
  33. Yabe, S., Y. Sakai and A. Yokota (2016) Thermosporothrix narukonensis sp. nov., belonging to the class Ktedonobacteria, isolated from fallen leaves on geothermal soil, and emended description of the genus Thermosporothrix. Int. J. Syst. Evol. Microbiol. 66:2152-2157. https://doi.org/10.1099/ijsem.0.001004
  34. Zhang, J., J. Qin, C. Zhao, C. Liu, H. Xie and S. Liang (2015) Response of bacteria and fungi in soil microcosm under the presence of pesticide endosulfan. Water Air Soil Poll. 226: 109. https://doi.org/10.1007/s11270-015-2309-6

Cited by

  1. Plant uptake potential of endosulfan from soil by carrot and spinach vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.053