DOI QR코드

DOI QR Code

Transcription Factor OsDOF18 Controls Ammonium Uptake by Inducing Ammonium Transporters in Rice Roots

  • Wu, Yunfei (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University) ;
  • Yang, Wenzhu (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University) ;
  • Wei, Jinhuan (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University) ;
  • Yoon, Hyeryung (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University) ;
  • An, Gynheung (Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University)
  • Received : 2016.10.31
  • Accepted : 2017.01.06
  • Published : 2017.03.31

Abstract

Nitrogen is one of the most important mineral elements for plant growth. We studied the functional roles of Oryza sativa DNA BINDING WITH ONE FINGER 18 (OsDOF18) in controlling ammonium uptake. The growth of null mutants of OsDOF18 was retarded in a medium containing ammonium as the sole nitrogen source. In contrast, those mutants grew normally in a medium with nitrate as the sole nitrogen source. The gene expression was induced by ammonium but not by nitrate. Uptake of ammonium was lower in osdof18 mutants than in the wild type, while that of nitrate was not affected by the mutation. This indicated that OsDOF18 is involved in regulating ammonium transport. Among the 10 ammonium transporter genes examined here, expression of OsAMT1;1, OsAMT1;3, OsAMT2;1, and OsAMT4;1 was reduced in osdof18 mutants, demonstrating that the ammonium transporter genes function downstream of OsDOF18. Genes for nitrogen assimilation were also affected in the mutants. These results provide evidence that OsDOF18 mediates ammonium transport and nitrogen distribution, which then affects nitrogen use efficiency.

Keywords

ammonium;ammonium transporters;nitrate;rice;transcription factor DOF

Acknowledgement

Supported by : Rural Development Administration, Basic Research Promotion Fund, Kyung Hee University

References

  1. An, S.Y., Park, S., Jeong, D.H., Lee, D.Y., Kang, H.G., Yu, J.H., Hur, J., Kim, S.R., Kim, Y.H., Lee, M., et al. (2003). Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol. 133, 2040-2047. https://doi.org/10.1104/pp.103.030478
  2. An, G., Jeong, D.H., Jung, K.H., and Lee, S. (2005a). Reverse genetic approaches for functional genomics of rice. Plant Mol. Biol. 59, 111-123. https://doi.org/10.1007/s11103-004-4037-y
  3. An, G., Lee, S., Kim, S.H., and Kim, S.R. (2005b). Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46,14-22. https://doi.org/10.1093/pcp/pci502
  4. Bao, A., Liang, Z., Zhao, Z., and Cai, H. (2015). Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int. J. Mol. Sci. 16, 9037-9063. https://doi.org/10.3390/ijms16059037
  5. Bloom, A.J., Sukrapanna, S.S., and Warner, R.L. (1992). Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 1294-1301. https://doi.org/10.1104/pp.99.4.1294
  6. Cai, C.H., Wang, J.Y., Zhu, Y.G., Shen, Q.R., Li, B., Tong,Y.P. and Li, Z.S. (2008) Gene structure and expression of high-affinity nitrate transport system in rice roots. J. Int. Plant Biol. 50, 443-451. https://doi.org/10.1111/j.1744-7909.2008.00642.x
  7. Chin, H.G., Choe, M.S., Lee, S.H., Park, S.H., Park, S.H., Koo, J.C., Kim, N.Y., Lee, J.J., Oh, B.G., Yi, G.H., et al. (1999). Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19, 615-624. https://doi.org/10.1046/j.1365-313X.1999.00561.x
  8. Cho, L.H., Yoon, J., Pasriga, R., and An, G. (2016). Homodimerization of Ehd1 is required to induce flowering in rice. Plant Physiol. 170, 2159-2171. https://doi.org/10.1104/pp.15.01723
  9. Feng, H.M., Yan, M., Fan, X.R., Li, B.Z., Shen, Q.R., Miller, A.J. and Xu, G.H. (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J. Exp. Bot. 62, 2319-2332. https://doi.org/10.1093/jxb/erq403
  10. Gu, R., Duan, F.Y., An, X., Zhang, F.S., von Wiren, N., and Yuan, L.X. (2013). Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Plant Cell Physiol. 54, 1515-1524. https://doi.org/10.1093/pcp/pct099
  11. Jeon, J.S., Lee, S., Jung, K.H., Jun, S.H., Jeong, D.H., Lee, J., Kim, C., Jang, S., Yang, K., Nam, J., et al. (2000). T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 22, 561-570. https://doi.org/10.1046/j.1365-313x.2000.00767.x
  12. Jeong, D.H., An, S.Y., Kang, H.G., Moon, S., Han, J.J., Park, S., Lee, H.S., An, K.S., and An, G. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol. 130, 1636-1644. https://doi.org/10.1104/pp.014357
  13. Jeong, D.H., An, S., Park, S., Kang, H.G., Park, G.G., Kim, S.R., Sim, J., Kim, Y.O., Kim, M.K., Kim, S.R., et al. (2006). Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J. 45, 123-132. https://doi.org/10.1111/j.1365-313X.2005.02610.x
  14. Kim, C.M., Piao, H.L., Park, S.J., Chon, N.S., Je, B.I., Sun, B.Y., Park, S.H., Park, J.Y., Lee, E.J., Kim, M.J., et al. (2004). Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J. 39, 252-263. https://doi.org/10.1111/j.1365-313X.2004.02116.x
  15. Kirk, G.J.D. and Kronzucker, H.J. (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Annals Bot. 96, 639-646. https://doi.org/10.1093/aob/mci216
  16. Kiyomiya, S., Nakanishi, H., Uchida, H., Tsuji, A., Nishiyama, S., Futatsubashi, M., Tsukuda, H., Ishioka, N.S., Watanabe, S., Ito, T., et al. (2001) Real time visualization of $^{13}N$-translocation in rice under different environment conditions using position emitting tracer imaging system. Plant Physiol. 125, 1743-1754. https://doi.org/10.1104/pp.125.4.1743
  17. Kumar, A., Silim, S.N., Okamoto, M., Siddiqi, M.Y., and Glass, A.D.M. (2003). Differential expression of three members of the AMT1 gene family encoding putative high affinity $NH_4^+$ transporters in roots of Oryza sativa subspecies indica. Plant Cell Environ. 26, 907-914. https://doi.org/10.1046/j.1365-3040.2003.01023.x
  18. Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., and Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol. J. 9, 826-837. https://doi.org/10.1111/j.1467-7652.2011.00592.x
  19. Kushwaha, H., Gupta, S., Singh, V.K., Rastogi, S., and Yadav, D. (2010). Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol. Biol. Rep. 38, 5037-5053.
  20. Lijavetzky, D., Carbonero, P., and Vicente-Carbajosa, J. (2003). Genomewide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol. Biol. 23, 3-17.
  21. Loque, D., and von Wiren, N. (2004). Regulatory levels for the transport of ammonium in plant roots. J. Exp. Bot. 55, 1293-1305. https://doi.org/10.1093/jxb/erh147
  22. Masumoto, C., Miyazawa, S., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H., and Miyao, M. (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proc. Natl. Acad. Sci. USA 107, 5226-5231. https://doi.org/10.1073/pnas.0913127107
  23. Martin-Rodriguez, A.J., Babarro, J.M., Lahoz, F., Sansón, M., Martin, V.S., Norte, M., Fernandez, J.J. (2015). From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: antifouling profile of alkyl triphenylphosphonium salts. PLoS One 10, e0123652. https://doi.org/10.1371/journal.pone.0123652
  24. Noguero, M., Atif, R.M., Ochatt, S., and Thompson, R.D. (2013). The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci. 209, 32-45. https://doi.org/10.1016/j.plantsci.2013.03.016
  25. Ranathunge, K., El-Kereamy, A., Gidda, S., Bi, Y.M., and Rothstein, S.J. (2014). AMT1;1 transgenic rice plants with enhanced $NH_4^+$+ permeability show superior growth and higher yield under optimal and suboptimal $NH_4^+$+ conditions. J. Exp. Bot. 65, 965-979. https://doi.org/10.1093/jxb/ert458
  26. Ryu, C.H., You, J.H., Kang, H.G., Hur, J.H., Kim, Y.H., Han, M.J., An, K.S., Chung, B.C., Lee, C.H., and An, G. (2004). Generation of TDNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol. Biol. 54, 489- 502. https://doi.org/10.1023/B:PLAN.0000038257.93381.05
  27. Ryu, C.H., Lee, S., Cho, L.H., Kim, S.L., Lee, Y.S., Choi, S.C., Jeong, H.J., Yi, J., Park, S.J., Han, C.D., and An, G. (2009). OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)- dependent flowering in rice. Plant Cell Environ. 32, 1412-1427. https://doi.org/10.1111/j.1365-3040.2009.02008.x
  28. Santos, L.A., de Souza, S.R., and Fernandes, M.S. (2012). OsDof25 expression alters carbon and nitrogen metabolism in Arabidopsis under high N-supply. Plant Biotechnol. Rep. 6, 327-337. https://doi.org/10.1007/s11816-012-0227-2
  29. Sonoda, Y., Ikeda, A., Saiki, S., von Wiren, N., Yamaya, T., and Yamaguchi, J. (2003). Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3). Plant Cell Physiol. 44, 726-734. https://doi.org/10.1093/pcp/pcg083
  30. Suenaga, A., Moriya K., Sonoda Y., Ikeda A., von Wiren N., Hayakawa T., Yamaguchi J., and Yamaya T. (2003). Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol. 44, 206-211. https://doi.org/10.1093/pcp/pcg017
  31. Tabuchi, M., Abiko, T., and Yamaya, T. (2007). Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J. Exp. Bot. 58, 2319-2327. https://doi.org/10.1093/jxb/erm016
  32. Tamura, W., Kojima, S., Toyokawa, A., Watanabe, H., Tabuchi- Kobayashi, M., Hayakawa, T., and Yamaya, T. (2011). Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front. Plant Sci. 2, 57.
  33. Weatherb, M.W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39, 971-974. https://doi.org/10.1021/ac60252a045
  34. Wu, Z., Akter, R., Arirob, W., Juntawong, N., Ma, C., and Deangmanee, P. (2015). Effects of light intensity and the remaining nitrate concentration on the beta-carotene accumulation of a wild Dunaliella salina strain isolated from the saline soil. Microbiology 6, 6233.
  35. Xuan, Y.H., Priatama, R.A., Huang, J., Je, B.I., Liu, J.M., Park, S.J., Piao, H.L., Son, D.Y., Lee, J.J., Park, S.H., et al. (2013). Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. New Phytol. 197, 791-804. https://doi.org/10.1111/nph.12075
  36. Yanagisawa, S., and Izui, K. (1993). Molecular cloning of two DNAbinding proteins of maize that are structurally different but interact with the same sequence motif. J. Biol. Chem. 268, 16028-16036.
  37. Yanagisawa, S., and Sheen, J. (1998). Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10, 75-89. https://doi.org/10.1105/tpc.10.1.75
  38. Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., and Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under lownitrogen conditions. Proc. Natl. Acad. Sci. USA 101, 7833-7838. https://doi.org/10.1073/pnas.0402267101
  39. Yang, J., Lee, S., Hang, R., Kim, S.R., Lee, Y.S., Cao, X., Amasino, R., and An, G. (2013). OsVIL2 functions with PRC2 to induce flowering by repressing OsLFL1 in rice. Plant J. 73, 566-578. https://doi.org/10.1111/tpj.12057
  40. Yi, J., and An, G. (2013). Utilization of T-DNA tagging lines in rice. J. Plant Biol. 56, 85-90. https://doi.org/10.1007/s12374-013-0905-9
  41. Yoon, J., Cho, L.H., Kim, S.L., Choi, H., Koh, H.J., and An, G. (2014). The BEL1‐type homeobox gene SH5 induces seed shattering by enhancing abscission‐zone development and inhibiting lignin biosynthesis. Plant J. 79:717-728. https://doi.org/10.1111/tpj.12581
  42. Yoshida, S., Forno, D.A., Cock, J.H., and Gomez, K.A. (1976). Laboratory Manual for Physiological Studies of Rice. The third edition. International Rice Research Institute; 61-64.
  43. Zhang, B., Chen, W., Foley, R.C., Buttner, M., and Singh, K.B. (1995). Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell 7, 2241-2252. https://doi.org/10.1105/tpc.7.12.2241
  44. Zhang, Y., Verhoeff, N.I., Chen, Z., Chen, S., Wang, M., Zhu, Z., and Ouwerkerk, P.B. (2015). Functions of OsDof25 in regulation of OsC4PPDK. Plant Mol. Biol. 89, 229-242. https://doi.org/10.1007/s11103-015-0357-3

Cited by

  1. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis) vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-01949-0
  2. Genome-wide identification and comparative evolutionary analysis of the Dof transcription factor family in physic nut and castor bean vol.7, pp.2167-8359, 2019, https://doi.org/10.7717/peerj.6354