DOI QR코드

DOI QR Code

Trends of Upper Jet Streams Characteristics (Intensity, Altitude, Latitude and Longitude) Over the Asia-North Pacific Region Based on Four Reanalysis Datasets

재분석자료들을 활용한 아시아-북태평양 상층제트의 강도(풍속) 및 3차원적 위치 변화 경향

  • Received : 2016.08.19
  • Accepted : 2017.01.17
  • Published : 2017.03.31

Abstract

In this study, trends of upper jet stream characteristics (intensity, altitude, latitude, and longitude) over the Asia-North Pacific region during the recent 30 (1979~2008) years were analyzed by using four reanalysis datasets (CFSR, ERA-Int., JRA-55, MERRA). We defined the characteristics of upper jet stream as the averages of mass weighted wind speed, mass-flux weighted altitude, latitude and longitude between 400 and 100 hPa. Due to the vertical averaging of jet stream characteristics, our results reveal a weaker spatial variabilities and trends than previous studies. In general, the four reanalysis datasets show similar jet stream properties (intensity, altitude, latitude and longitude) although the magnitude and trends are slightly different among the reanalysis datasets. The altitude of MERRA is slightly higher than that of others for all seasons. The domain averaged intensity shows a weakening trend except for winter and the altitude of jet stream shows an increasing trend for all seasons. Also, the meridional trend of jet core shows a poleward trend for all seasons but it shows a contrasting trend, poleward trend in the continental area but equatorward trend in the Western Pacific region during summer. The zonal trend of jet core is very weak but a relatively strong westward trend in jet core except for spring and winter. The trends of jet stream characteristics found in this study are thermodynamically consistent with the global warming trends observed in the Asia-Pacific region.

Keywords

Jet stream;reanalysis data;Asia-North Pacific region;weakening trend;poleward trend

References

  1. Archer, C. L., and K. Caldeira, 2008: Historical trends in the jet streams. Geophys. Res. Lett., 35, L08803, doi:10.1029/2008GL033614.
  2. Barton, N. P., and A. W. Ellis, 2009: Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol., 29, 851-862, doi:10.1002/joc.1750. https://doi.org/10.1002/joc.1750
  3. Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1-28, doi:10.1002/qj.776.
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828. https://doi.org/10.1002/qj.828
  5. Friedman, A. R., Y. T. Hwang, J. C. H. Ching, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and on future projections. J. Climate, 26, 5419-5433, doi:10.1175/JCLID-12-00525.1. https://doi.org/10.1175/JCLI-D-12-00525.1
  6. Gibson, J. K., P. Kallberg, S. Uppala, A. Hernandez, A. Nomura, and E. Serrano, 1997: ERA description. ECMWF Re-anal. Proj. Rep. Ser., 1, 66.
  7. Ha, K.-J., S.-K. Park, and K.-Y. Kim, 2003: Interannual variability in summer precipitation around the Korean Peninsula and its associated East Asian summer circulation. Asia-Pac. J. Atmos. Sci., 39, 575-586.
  8. Holton, J. R., 2004: An Introduction to Dynamic Meteorology, Volume 88, International Geophysics Series. Elsevier Academic Press, 535 pp.
  9. Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 9367-9384. https://doi.org/10.5194/acpd-7-9367-2007
  10. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press, 1535 pp.
  11. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-470, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  12. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: The NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631-1643. https://doi.org/10.1175/BAMS-83-11-1631
  13. Kim, S., C.-K. Park, and M.-K. Kim, 2005: The regime shift of the northern hemispheric circulation responsible for the spring drought in Korea. Asia-Pac. J. Atmos. Sci., 41, 571-585.
  14. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, doi:10.2151/jmsj.2015-001. https://doi.org/10.2151/jmsj.2015-001
  15. Koch, P., H. Wernli, and H. C. Davies, 2006: An eventbased jet stream climatology and typology. Int. J. Climatol., 26, 283-301, doi:10.1002/joc.1255. https://doi.org/10.1002/joc.1255
  16. Kuang, X., Y. Zhang, Y. Huang, and D. Huang, 2014: Spatial differences in seasonal variation of the upper-tropospheric jet stream in the Northern Hemisphere and its thermal dynamic mechanism. Theor. Appl. Climatol., 117, 103-112, doi:10.1007/s00704-013-0994-x. https://doi.org/10.1007/s00704-013-0994-x
  17. Lee, Y.-Y., G.-H. Lim, and J.-S. Kug, 2010: Influence of the East Asian winter monsoon on the storm track activity over the north pacific. J. Geophys. Res., 115, D09102, doi:10.1029/2009JD012813.
  18. Liang, C., and O. W. Frauenfeld, 2014: Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. J. Climate, 27, 3920-3937, doi:10.1175/JCLI-D-13-00465.1. https://doi.org/10.1175/JCLI-D-13-00465.1
  19. Manney, G. L., M. I. Hegglin, W. H. Daffer, M. J. Schwartz, M. L. Santee, and S. Pawson, 2014: Climatology of upper tropospheric-lower stratospheric (UTLS) jets and tropopauses in MERRA. J. Climate, 27, 3248-3271, doi:10.1175/JCLI-D-13-00243.1. https://doi.org/10.1175/JCLI-D-13-00243.1
  20. Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369-432, doi:10.2151/jmsj. 85.369. https://doi.org/10.2151/jmsj.85.369
  21. Pena-Ortiz, C., D. Gallego, P. Ribera, P. Ordonez, and M. D. C. Alvarez-Castro, 2013: Observed trends in the global jet stream characteristics during the second half of the 20th century. J. Geophys. Res. Atmos., 118, 2702-2713, doi:10.1002/jgrd.50305.
  22. Rienecker, M. M., and Coauthors, 2011: MERRA: NASA's Modern-Era Retrospective Analysis for research and applications. J. Climate, 24, 3624-3648, doi: 10.1175/JCLI-D-11-00015.1. https://doi.org/10.1175/JCLI-D-11-00015.1
  23. Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057, doi:10.1175/2010BAMS3001.1. https://doi.org/10.1175/2010BAMS3001.1
  24. Santer, B. D., and Coauthors, 2003: Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res., 108, 4002, doi:10.1029/2002JD002258. https://doi.org/10.1029/2002JD002258
  25. Santer, B. D., and Coauthors, 2004: Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res., 109, D21104, doi:10.1029/2004JD005075.
  26. Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, D21101, doi:10.1029/2006JD007363. https://doi.org/10.1029/2006JD007363
  27. Seidel, D. J., and W. J. Randel, 2007: Recent widening of the tropical belt: Evidence from tropopause observations. J. Geophys. Res., 112, D20113, doi:10.1029/2007JD008861. https://doi.org/10.1029/2007JD008861
  28. So, E.-M., and M.-S. Suh, 2015: Characteristic variations of upper jet stream over North-East Asian region during the recent 35 years (1979-2013) based on four reanalysis datasets. Atmosphere, 25, 249-262, doi:10.14191/Atmos.2015.25.2.235 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.249
  29. Stickler, A., and Coauthors, 2014: ERA-CLIM: Historical surface and upper-air data for future reanalyses. Bull. Amer. Meteor. Soc., 95, 1419-1430, doi:10.1175/BAMS-D-13-00147.1. https://doi.org/10.1175/BAMS-D-13-00147.1
  30. Strong, C., and R. E. Davis, 2007: Winter jet stream trends over the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 133, 2109-2115, doi:10.1002/qj.171. https://doi.org/10.1002/qj.171
  31. Sun, J., 2014: Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai-Jiangnan region of China in 2013. Chinese Sci. Bull., 59, 3465-3470, doi:10.1007/s11434-014-0425-0. https://doi.org/10.1007/s11434-014-0425-0
  32. Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012, doi:10.1256/qj.04.176. https://doi.org/10.1256/qj.04.176
  33. Yang, S., K. M. Lau, and K.-M. Kim, 2002: Variations of the East Asian jet stream and Asian-Pacific- American winter climate anomalies. J. Climate, 15, 306-325, doi:10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2. https://doi.org/10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
  34. Zhang, Y., X. Kuang, W. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, doi:10.1029/2006GL026377. https://doi.org/10.1029/2006GL026377

Acknowledgement

Supported by : 한국기상산업진흥원