Two-dimensional Assembly of Organically Functionalized Ag Nanoparticles at Air-water Interface

공기와 물이 형성하는 계면에서 발생하는 유기적으로 기능화된 은 나노 입자들의 2차원 조립

  • Chung, Sungwook (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 정성욱 (부산대학교 공과대학 화공생명공학부)
  • Received : 2017.01.06
  • Accepted : 2017.01.12
  • Published : 2017.02.10


We report organically functionalized Ag nanoparticles spontaneously form two-dimensional (2D) novel superstructures at the air-water interface. Analysis of the superstructures suggests that the 2D assembly of Ag nanoparticles originates from a subtle interplay between characteristic inter-particle interactions that can be readily controlled by changing the sizes of nanoparticle metal core and surfactants. Such structures have potential uses in nanostructured functional materials, catalysis, and device applications.


Supported by : Pusan National University


  1. R. Kerridge, 890. Melting-point diagrams for binary triglyceride systems, J. Chem. Soc., 4577-4579 (1952).
  2. A. A. Wheeler, W. J. Boettinger, and G. B. Mcfadden, Phase-field model for isothermal phase-transitions in binary-alloys, Phys. Rev. A, 45, 7424-7439 (1992).
  3. S. Jamali, M. Yamanoi, and J. Maia, Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions, Soft Matter., 9, 1506-1515 (2013).
  4. R. Koningsveld, W. H. Stockmayer, and E. Nies, Polymer Phase Diagrams: A Textbook, Oxford University Press, NC, USA (2001).
  5. R. A. Matkar, and T. Kyu, Phase diagrams of binary crystalline-crystalline polymer blends, J. Phys. Chem. B, 110, 16059-16065 (2006).
  6. D. Andelman, F. Brochard, and J. F. Joanny, Phase-transitions in Langmuir monolayers of polar-molecules, J. Chem. Phys., 86, 3673-3681 (1987).
  7. D. Andelman, F. Brochard, C. Knobler, and F. Rondelez, In: W. M. Gelbart, A. Bhen-Shaul, and D. Roux (eds.). Micelles, Membranes, Microemulsions, and Monolayers, Springer-Verlag, Berlin, Germany (1994).
  8. D. J. Keller, H. M. Mcconnell, and V. T. Moy, Theory of superstructures in lipid monolayer phase-transitions, J. Phys. Chem., 90, 2311-2315 (1986).
  9. H. Mohwald, Phospholipid and phospholipid-protein monolayers at the air/water interface, Annu. Rev. Phys. Chem., 41, 441-476 (1990).
  10. A. J. Dickstein, S. Erramilli, R. E. Goldstein, D. P. Jackson, and S. A. Langer, Labyrinthine pattern-formation in magnetic fluids, Science, 261, 1012-1015 (1993).
  11. R. E. Rosensweig, Magnetic Fluids, Sci. Am., 247, 124-132 (1982).
  12. D. Vanderbilt, Phase segregation and work-function variations on metal-surfaces - spontaneous formation of periodic domain-structures, Surf. Sci., 268, L300-L304 (1992).
  13. P. Zeppenfeld, M. Krzyzowski, C. Romainczyk, G. Comsa, and M. G. Lagally, Size relation for surface systems with long-range interactions, Phys. Rev. Lett., 72, 2737-2740 (1994).
  14. L. Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002).
  15. G. L. Ge and L. Brus, Evidence for spinodal phase separation in two-dimensional nanocrystal self-assembly, J. Phys. Chem. B, 104, 9573-9575 (2000).
  16. E. Rabani, D. R. Reichman, P. L. Geissler, and L. E. Brus, Drying-mediated self-assembly of nanoparticles, Nature, 426, 271-274 (2003).
  17. U. Steiner, A. Meller, and J. Stavans, Entropy-driven phase-separation in binary emulsions, Phys. Rev. Lett., 74, 4750-4753 (1995).
  18. A. Karim, T. M. Slawecki, S. K. Kumar, J. F. Douglas, S. K. Satija, C. C. Han, T. P. Russell, Y. Liu, R. Overney, O. Sokolov, and M. H. Rafailovich, Phase-separation-induced surface patterns in thin polymer blend films, Macromolecules, 31, 857-862 (1998).
  19. Z. Nie, A. Petukhova, and E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol., 5, 15-25 (2010).
  20. P. D. Yang and F. Kim, Langmuir-Blodgett assembly of one-dimensional nanostructures, Chemphyschem., 3, 503-506 (2002).<503::AID-CPHC503>3.0.CO;2-U
  21. L. Cademartiri, K. J. M. Bishop, P. W. Snyder, and G. A. Ozin, Using shape for self-assembly, Philos. T. R. Soc. A, 370, 2824-2847 (2012).
  22. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system, J. Chem. Soc., Chem. Commun., 801-802 (1994).
  23. J. R. Heath, C. M. Knobler, and D. V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: The influence of particle size, size distribution, and surface passivant, J. Phys. Chem. B, 101, 189-197 (1997).
  24. D. V. Leff, L. Brandt, and J. R. Heath, Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines, Langmuir, 12, 4723-4730 (1996).
  25. D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart, Thermodynamic control of gold nanocrystal size - experiment and theory, J. Phys. Chem., 99, 7036-7041 (1995).
  26. G. Markovich, D. V. Leff, S.-W. Chung, H. M. Soyez, B. Dunn, and J. R. Heath, Parallel fabrication and single-electron charging of devices based on ordered, two-dimensional phases of organically functionalized metal nanocrystals, Appl. Phys. Lett., 70, 3107-3109 (1997).
  27. S.-W. Chung, G. Markovich, and J. R. Heath, Fabrication and alignment of wires in two dimensions, J. Phys. Chem. B, 102, 6685-6687 (1998).
  28. R. P. Sear, S.-W. Chung, G. Markovich, W. M. Gelbart, and J. R. Heath, Spontaneous patterning of quantum dots at the air-water interface, Phys. Rev. E, 59, R6255-R6258 (1999).
  29. P. C. Ohara, D. V. Leff, J. R. Heath, and W. M. Gelbart, Crystallization of opals from polydisperse nanoparticles, Phys. Rev. Lett., 75, 3466-3469 (1995).
  30. V. S. Stubican and R. C. Bradt, Eutectic solidification in ceramic systems, Annu. Rev. Mater. Sci., 11, 267-297 (1981).
  31. H. M. Mcconnell, Structures and transitions in lipid monolayers at the air-water-interface, Annu. Rev. Phys. Chem., 42, 171-195 (1991).
  32. J.-F. Lemineur, N. Saci, and A. M. Ritcey, Impact of concentration and capping ligand length on the organization of metal nanoparticles in Langmuir-Blodgett surface micelles and nanostrands, Colloids Surf. A: Physicochem. Eng. Asp., 498, 88-97 (2016).
  33. S.-W. Yeh, K.-H. Wei, Y.-S. Sun, U. S. Jeng, and K. S. Liang, CdS nanoparticles induce a morphological transformation of poly(styrene-b-4-vinylpyridine) from hexagonally packed cylinders to a lamellar structure, Macromolecules, 38, 6559-6565 (2005).