Effects of Alkali Metals and Chlorine on Corrosion of Super Heater Tube in Biomass Circulating Fluidized Bed Boiler

순환유동층보일러의 과열기 튜브 부식에 알칼리 금속과 염소가 미치는 영향

  • Back, Seung-Ki (Department of Environmental Engineering, Yonsei University) ;
  • Yoo, Heung-Min (Department of Environmental Engineering, Yonsei University) ;
  • Jang, Ha-Na (Department of Environmental Engineering, Yonsei University) ;
  • Joung, Hyun-Tae (POSCO E&C Research Center) ;
  • Seo, Yong-Chil (Department of Environmental Engineering, Yonsei University)
  • Received : 2016.10.19
  • Accepted : 2016.11.24
  • Published : 2017.02.10


This study provides the identification of corrosion cause substances in super heater tube from a commercial scale circulating fluidized bed boiler. Electricity is produced by the combustion of biomass mainly wood waste. The biomass, super heater tube, super heater tube ash, and boiler ash were collected and components associated with corrosion were analyzed. A large amount of oxygen-containing material was found due to oxidation. The chlorine content was analyzed as 6.1% and 4.3% in super heater tube ash and boiler ash respectively which were approximately 20 and 14 times higher than those of designed values. Also, alkaline metal contents (K, Na, Ca) were very high in ash samples collected from super heater tube and boiler. The tendency of slagging and fouling was predicted based on X-Ray Fluorescence (XRF) results. Basicity that can lead to slagging was estimated as 3.62 and 2.72 in super heater tube and boiler ash, respectively. Slagging would occur with ash content when considering the designed value as 0.35.


corrosion;circulating fluidized bed boiler;biomass;alkaline metal;chlorine


Supported by : 환경부


  1. Y. J. Song, Trends and Implications of Energy Transition Policy in Germany, KERI Brief 16-04, Korea Economic Research Institute (2016).
  2. N. Y. Jeong and L. H. Kim, The study on CDM project of ligneous biomass co-fired in coal thermal power plant, J. Energy Eng., 20(3), 231-235 (2011).
  3. J. H. Lee, J. K. Kim, E. S. Yim, C. S. Chung, and H. J. Rheem, Overview of the biomass as a renewable energy, K. Korean Oil Chem. Soc., 29(4), 638-652 (2012).
  4. J. W. Lee and C. H. Park, The type and method of production of bio-energy, News Inf. Chem. Eng., 29(4), 493-499 (2011).
  5. M. G. Lee, Introduction of cogeneration using biomass, Daewoo Eng. Technol. Rep., 24(1), 53-62 (2008).
  6. Korea Energy Agency, Renewable Energy Status Report: Renewable Energy Policy Network for the 21st Century (2015).
  7. Y. Fukuda and M. Kumon, Application of high velocity flame spraying for the heat exchange tubes in coal fired boilers, Proceed. Int. Thermal Spray Confer. Kobe, Japan (1995).
  8. W. Liu, Failure analysis on the economisers of a biomass fuel boiler, Eng. Fail. Anal., 31, 101-117 (2013).
  9. B. Q. Wang, Erosion-corrosion of coatings by biomass-fired boiler fly ash, Wear, 188, 40-48 (1995)
  10. J. Y. Xie and P. M. Walsh, Erosion-corrosion of carbon steel by products of coal combustion, Wear, 186, 256-265 (1995).
  11. A. J. Denny, Principles and Prevention of Corrosion 2nd edition, 351-352, Macmillan, NY, USA (1992).
  12. S. K. Das, S. Hegde, P. K. Dey, and S. P. Mehrotra, Erosion-oxidation response of boiler grade steels: A mathematical investigation, Res. Lett. Mater. Sci., Article ID 542161 (2008).
  13. L. Zhang, V. Sazonov, J. Kenta, T. Dixon, and V. Novozhilov, Analysis of boiler-tube erosion by the technique of acoustic emission part I. mechanical erosion, Wear, 250, 762-769 (2001).
  14. Hantap Professional Engineers, Prevention of Metal Corrosion (2006).
  15. Y. S. Li, S. Pasten, and M. Spiegel, High temperature interaction of pure Cr with KCl, Mater. Sci. Forum, 461, 1047-1054 (2004).
  16. J. Pettersson, H. Asteman, J. E. Svensson, and L. G. Johansson, KCL-induced corrosion of a 304-type austenitic stainless steel at $600\;^{\circ}C$ - the role of potassium, oxidation of metals, 64, 26-41 (2005).
  17. D. B. Lee, High-temperature corrosion by chlorides in biomass-fired plants, J. Korean Inst. Surf. Eng., 49(1), 14-19 (2016).
  18. E. Reese and H. J. Grabke, Effects of chlorides on the oxidation of the $2^{1/4}$ Cr-1 Mo steel, Mater. Corros., 43, 547-557 (1992).
  19. E. Reese and H. J. Grabke, Effects of sodium chloride on the oxidation of high alloy Cr- and Cr-Ni-steels, Mater. Corros., 44, 41-47 (1993).
  20. N. Folkesson, L. G. Johansson, and J. E. Svensson, Initial stages of the HCl-induced high-temperature corrosion of alloy 310, J. Electrochem. Soc., 154(9), 515-521 (2007).
  21. O. Seri, The Effect of NaCl concentration of the corrosion behavior of aluminum containing irom, Corros. Sci., 36(10), 1789-1803 (1994).
  22. R. Ericsson, The Influence of sodium chloride on the atmospheric corrosion of steel, Mater. Corrs., 29, 400-403 (1978).
  23. W. Huijbregts and R. Leferink, Latest advances in the understanding of acid dewpoint corrosion - corrosion and stress corrosion cracking in combustion gas condensates, Anti-Corros. Methods Mater., 51, 173-188 (2004).
  24. W. M. Cox, W. Huijbregts, and R. Leferink, Components susceptible to dew-point corrosion, ASM Handb., 13C, 491-496 (2006).
  25. A. V. Levy, The erosion-corrosion of tubing steels in combustion boiler environments, Corros. Sci., 35, 1035-1043 (1993).
  26. H. H. Krause, High temperature corrosion problems in waste incineration system, J. Mater. Energy Syst., 7(4), 322-332 (1986).
  27. P. D. Miller and H. H. Krause, Corrosion of carbon and stainless steels in flue gases from municipal incinerators, Proceedings of The American Society of Mechanical Engineers (ASME) National Incinerator Conference, ASME, New York, 300-309 (1972).
  28. L. C. Brown, J. F. Funk, and S. K. Showalter, High efficiency generation of hydrogen fuels using nuclear power, Annual Report to the U.S. Department of Energy, Nuclear Energy Research Initiative (NERI) GA-A23451 (2000).
  29. I. Obernberger and F. Biedermann, Fractionate heavy metal separation in biomass combustion plants as a primary measure for a sustainable ash utilization, heavy metal fractionation in biomass combustion plants, Proceeding of Developments in Thermochemical Biomass Conversion, Canada, 1368-1383 (1996).
  30. R. Riedl, J. Dahl, O. Obernberger, and M. Narodoslawsky, Corrosion in fire tube boilers of biomass combustion plants, Proceedings of the China Internatioanl Corrosion Control Conference, China Chemical Anticorrosion Technology Association (1999).
  31. S. R. Chandrasekaran, P. K. Hopke, L. Rector, G. Allen, and L. Lin, Chemical composition of wood chips and wood pellets, Energy Fuels, 26, 4932-4937 (2012).
  32. S. C. Srivastava, K. M. Godiwalla, and M. K. Banerjee, Review fuel ash corrosion of boiler and superheater tubes, J. Mater. Sci., 32, 835-849 (1997).
  33. B. C. Choi, H. T. Kim, and W. G. Chun, A study on the slagging behavior with various composition of coal ash, J. Energy Eng., 8(3), 445-451 (1999).
  34. J. N. Harb, C. L. Munson, and G. H. Richards, Use of equilibrium calculation to predict the behavior of coal ash in combustion systems, Energy Fuels, 7, 208-214 (1993).