Effect of microtemperatures for micropolar thermoelastic bodies

  • Marin, Marin (Department of Mathematics and Computer Science, Transilvania University of Brasov) ;
  • Baleanu, Dumitru (Department of Mathematics and Computer Science, Cankaya University) ;
  • Vlase, Sorin (Department of Mechanical Engineering, Transilvania University of Brasov)
  • Received : 2016.07.01
  • Accepted : 2016.11.14
  • Published : 2017.02.10


In this paper we investigate the theory of micropolar thermoelastic bodies whose micro-particles possess microtemperatures. We transform the mixed initial boundary value problem into a temporally evolutionary equation on a Hilbert space and after that we prove the existence and uniqueness of the solution. We also approach the study of the continuous dependence of solution upon initial data and loads.


micro-particles;microtemperatures;micropolar;semigroup;continuous dependence


  1. Adams, R.A. (1975), Sobolev Spaces, Academic Press, New York.
  2. Chirita, S, Ciarletta, M. and D'Apice, C. (2013), "On a theory of thermoelasticity with microtem-peratures", J. Math. Anal. Appl., 397, 349-361.
  3. Chirita, S. and Ghiba, I.D. (2012), "Rayleigh waves in Cosserat elastic materials", Int. J. Eng. Sci., 51, 117-127.
  4. Dyszlewicz, J. (2004), "Micropolar Theory of Elasticity", Lect. Notes Appl. Com-put. Mech., Vol. 15, Springer, Berlin/Heidelberg/New York.
  5. Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15, 909-924.
  6. Eringen, A.C. (1999), Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York/Berlin/ Heidelber.
  7. Grot, R.A. (1969), "Thermodynamics of a continuum with microstructure, Int. J. Eng. Sci., 7, 801-814.
  8. Iesan, D. (2004), Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht.
  9. Iesan, D. and Nappa, L. (2005), "On the theory of heat for micromorphic bodies", Int. J. Eng. Sci., 43, 17-32.
  10. Iesan, D. and Quintanilla, R. (2000), "On a theory of thermoelasticity with mi-crotemperatures", J. Therm. Stress., 23, 199-215.
  11. Kim, D.K., Yu, S.Y. and Choi, H.S. (2013), "Condition assessment of raking dam-aged bulk carriers under vertical bending moments", Struct. Eng. Mech., 46(5), 629-644.
  12. Marin, M, (1996), "Some basic theorems in elastostatics of micropolar materials with voids", J. Comput. Appl. Math., 70(1), 115-126.
  13. Marin, M, Abbas, I. and Kumar, R. (2014), "Relaxed Saint-Venant principle for thermoelastic micropolar di usion", Struct. Eng. Mech., 51(4), 651-662.
  14. Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus, Acad. Sci. Paris, Serie II, 321(12), 475-480.
  15. Marin, M. (2010), "A domain of in uence theorem for microstretch elastic materials", Nonlin. Anal. R.W.A., 11(5), 3446-3452.
  16. Marin, M. and Marinescu, C. (1998), "Thermo-elasticity of initially stressed bodies. Asymptotic equipartition of energies", Int. J. Eng. Sci., 36 (1), 73-86.
  17. Othman, M.I., Tantawi, R.S. and Abd-Elaziz, E.M. (2016), "Effect of initial stress on a porous thermoelastic medium with microtemperatures", J. Porous Media, 19(2), 155-172.
  18. Othman, M.I., Tantawi, R.S. and Hilal, M.I. (2016), "Hall current and gravity effect on magneto-micropolar thermoelastic medium with microtempe-ratures", J. Therm. Stress., 39(7), 751-771.
  19. Othman, M.I., Tantawi, R.S. and Hilal, M.I. (2016), "Rotation and modified Ohm's law influence on magneto-thermoelastic micropolar material with microtemperatures", Appl. Math. Comput., 276(5), 468-480
  20. Pazy, A. (1983), Semigroups of Operators of Linear Operators and Applications, Springer, New York, Berlin.
  21. Scalia, A. and Svanadze, M. (2009), "Potential method in the linear theory of thermoelasticity with microtemperatures", J. Therm. Stress., 32, 1024-1042.
  22. Sharma, K. and Marin, M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", An. Sti. Univ. Ovidius Constanta, 22(2), 151-175.
  23. Straughan, B. (2011), Heat Waves, Applied Mathematical Sciences, Springer, New York.
  24. Takabatake, H. (2012), "Effects of dead loads on the static analysis of plates", Struct. Eng. Mech., 42(6), 761-781.

Cited by

  1. A mathematical model for three-phase-lag dipolar thermoelastic bodies vol.2017, pp.1, 2017,
  2. A dipolar structure in the heat-flux dependent thermoelasticity vol.8, pp.3, 2018,
  3. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system pp.1432-0959, 2018,
  4. Improved rigidity of composite circular plates through radial ribs pp.2041-3076, 2018,