Insect Resistance of Tobacco Plant Expressing CpBV-ELP1 Derived from a Polydnavirus

폴리드나바이러스 유래 CpBV-ELP1 발현 담배의 내충성

  • Kim, Eunseong (Department of Bio-Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bio-Sciences, Andong National University)
  • 김은성 (안동대학교 생명자원과학과) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2016.10.07
  • Accepted : 2016.12.12
  • Published : 2017.03.01


Polydnaviruses (PDVs) are a group of double-stranded DNA viruses symbiotic to some endoparasitoid wasps. Cotesia plutellae bracovirus (CpBV) is a PDV symbiotic to an endoparasitoid wasp, C. plutellae, parasitizing young larvae of Plutella xylostella. An early expressed gene, CpBV-ELP1, plays an important role in the parasitism by suppressing host cellular immunity by its cytotoxic activity against hemocytes. This study aimed to test its oral toxicity against insect pest by expressing it in a recombinant tobacco plant. A recombinant CpBV-ELP1 protein was produced using a baculovirus expression system and secreted to cell culture medium. The cell cultured media were used to purify CpBV-ELP1 by a sequential array of purification steps: ammonium sulfate fractionation, size exclusion chromatography, and ion exchange chromatography. Purified rCpBV-ELP1 exhibited a significant cytotoxicity against Spodoptera exigua hemocytes. CpBV-ELP1 was highly toxic to the fifth instar larvae of S. exigua by injection to hemocoel. It also showed a significant oral toxicity to fifth instar larvae of S. exigua by a leaf-dipping assay. CpBV-ELP1 was cloned into pBI121 vector under CaMV 35S promoter with opaline synthase terminator. Resulting recombinant vector (pBI121-ELP1) was used to transform Agrobacterium tumefaciens LBA4404. The recombinant bacteria were then used to induce callus of a tobacco (Nicotiana tabacum Xanthi) leaves and subsequent generation (T1) plants were selected. T1 generation tobacco plants expressing CpBV-ELP1 gave significant insecticidal activities against S. exigua larvae. These results suggest that CpBV-ELP1 gene can be used to control insect pests by constructing transgenic crops.


Supported by : 안동대학교


  1. Ali, R., Kim, Y., 2012. A novel polydnaviral gene family, BEN, and its immunosuppressive function in larvae of Plutella xylostella parasitized by Cotesia plutellae. J. Invertebr. Pathol. 110, 389-397.
  2. Bae, S., Kim, Y., 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. A 138, 39-44.
  3. Basio, N.A.M., Kim, Y., 2006. Additive effect of teratocyte and calyx fluid from Cotesia plutellae on immunosuppression of Plutella xylostella. Physiol. Entomol. 31, 341-347.
  4. Bezier, A., Annaheim, M., Herbiniere, J., Wetterwald, C., Gyapay, G., Bernard-Samain, S., Wincker, P., Roditi, I., Heller, M., Belghazi, M., Pfister-Wilhem, R., Periquet, G., Dupuy, C., Huguet, E., Volkoff, A.N., Lanzrein, B., Drezen, J.M., 2009. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323, 926-930.
  5. Bezier, A., Louis, F., Jancek, S., Periquet, G., Theze, J., Gyapay, G., Musset, K., Lesobre, J., Lenoble, P., Dupuy, C., Gundersen- Rindal, D., Herniou, E.A., Drezen, J.M., 2013. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20130047.
  6. Bradford, M.M., 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  7. Chen, Y.F., Gao, F., Ye, X.Q., Wei, S.J., Shi, M., Zheng, H.J., Chen, X.X., 2011. Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414, 42-50.
  8. Choi, J.Y., Roh, J.Y., Kang, J.N., Shim, H.J., Woo, S.D., Jin, B.R., Li, M.S., Je, Y.H., 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332, 487-493.
  9. Di Lelio, I., Caccia, S., Coppola, M., Buonanno, M., Di Prisco, G., Varricchio, P., Franzetti, E., Corrado, G., Monti, S.M., Rao, R., Casartelli, M., Pennacchio, F., 2014. A virulence factor encoded by a polydnavirus confers tolerance to transgenic tobacco plants against lepidopteran larvae, by impairing nutrient absorption. PLoS ONE 9, e113988.
  10. Gad, W., Kim, Y., 2008. A viral histone H4 encoded in Cotesia plutellae bracovirus inhibits hemocyte spreading behavior of the diamondback moth, Plutella xylostella. J. Gen. Virol. 89, 931-938.
  11. Gad, W., Kim, Y., 2009. N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. Insect Mol. Biol. 18, 111-118.
  12. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29, 180-183.
  13. Harwood, S.H., Grosovsky, A.J., Cowles, E.A., Davis, J.W., Beckage, N.E., 1994. An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology 205, 381-392.
  14. Hepat, R., Song, J., Lee, D., Kim, Y., 2013. A viral histone H4 joins to eukaryotic nucleosomes and alters host gene expression. J. Virol. 87, 11223-11230.
  15. Herniou, E.A., Huguet, E., Theze, J., Bezier, A., Periquet, G., Drezen, J.M., 2013. When parasitic wasps hijacked viruses: genomic and functional evolution of polydnaviruses. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20130051.
  16. Ibrahim, A.M., Kim, Y., 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 52, 943-950.
  17. Ibrahim AM, Kim Y. 2008. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses. Naturwissenschaften 95, 25-32.
  18. Jung, S., Kwoen, M., Choi, J.Y., Je, Y.H., Kim, Y., 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia Pac. Entomol. 9, 255-263.
  19. Kim, E., Kim, Y., 2016. Translational control of host gene expression by a Cys-motif protein encoded in a bracovirus. PLoS ONE 11, e0161661.
  20. Kim, E., Kim, Y., Yeam, I., Kim, Y., 2016. Transgenic expression of a viral cystatin gene CpBV-CST1 in tobacco confers insect resistance. Environ. Entomol. 45, 1322-1331.
  21. Kim, Y. 2006. Polydnavirus and its novel application to insect pest control. Korean J. Appl. Entomol. 45, 241-259.
  22. Kim, Y., Bae, S., Lee, S., 2004. Polydnavirus replication and ovipositional habit of Cotesia plutellae. Korean J. Appl. Entomol. 43, 225-231.
  23. Kim, Y., Ryu, S., 2007. Ultrastructure of Cotesia plutellae bracovirus in its replication at wasp ovarian calyx. J. Asia Pac. Entomol. 10, 357-361.
  24. Kumar, S., Gu, X., Kim, Y., 2016a. A viral histone H4 suppresses insect insulin signal and delays host development. Dev. Comp. Immunol. 63, 66-77.
  25. Kumar, S., Venkata, P., Kim, Y., 2016b. Suppressive activity of a viral histone H4 against two host chromatin remodeling factors: lysine demethylase and SWI/SNF. J. Gen. Virol., In press.
  26. Kwon, B., Kim, Y., 2008. Transient expression of an EP1-like gene encoded in Cotesia plutellae bracovirus suppresses the hemocyte population in the diamondback moth, Plutella xylostella. Dev. Comp. Immunol. 32, 932-942.
  27. Kwon, B., Song, S., Choi, J.Y., Je, Y.H., Kim, Y., 2010. Transient expression of specific Cotesia plutellae bracoviral segments induces prolonged larval development of the diamondback moth, Plutella xylostella. J. Insect Physiol. 56, 650-658.
  28. Lee, S., Kim, Y., 2008. Two homologous parasitism-specific proteins encoded in Cotesia plutellae bracovirus and their expression profiles in parasitized Plutella xylostella. Arch. Insect Biochem. Physiol. 67, 157-171.
  29. Maiti, I.B., Dey, N., Pattanaik, S., Dahlman, D.L., Rana, R.L., Webb, B.A., 2003. Antibiosis-type insect resistance in transgenic plants expressing a teratocyte secretory protein (TSP14) gene from a hymenopteran endoparasite (Microplitis croceipes). Plant Biotechnol. J. 1, 209-219.
  30. Park, J., Kim, Y., 2012. Change in hemocyte populations of the beet armyworm, Spodoptera exigua, in response to bacterial infection and eicosanoid mediation. Korean J. Appl. Entomol. 61, 349-356.
  31. Prasad, S.V., Hepat, R., Kim, Y., 2014. Selectivity of a translation-inhibitory factor, $CpBV15{\beta}$, in host mRNAs and subsequent alterations in host development and immunity. Dev. Comp. Immunol. 44, 152-162.
  32. Pruijssers, A.J., Strand, M.R., 2007. PTP-H2 and PTP-H3 from Microplitis demolitor bracovirus localize to focal adhesions and are antiphagocytic in insect immune cells. J. Virol., 81, 1209-1219.
  33. Sambrook, J., Fritsh, E.F., Maniatis, T., 1989. Molecular cloning. A laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, NY.
  34. Stoltz, D.B., 1990. Evidence for chromosomal transmission of polydnavirus genomes. Can. J. Microbiol. 36, 538-543.
  35. Strand, M.R., Burke, G.R., 2013. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr. Opin. Virol. 3, 587-594.
  36. Strand, M.R., Burke, G.R., 2015. Polydnaviruses: from discovery to current insights. Virology 479-480, 393-402
  37. Surakasi, V.P., Nalini, M., Kim, Y., 2011. Host translational control of a polydnavirus, Cotesia plutellae bracovirus, by sequestering host eIF4A to prevent formation of a translation initiation complex. Insect Mol. Biol. 20, 609-618.
  38. Volkoff, A.N., Jouan, V., Urbach, S., Samain, S., Bergoin, M., Wincker, P., Demettre, E., Cousserans, F., Provost, B., Coulibaly, F., Legeai, F., Beliveau, C., Cusson, M., Gyapay, G., Drezen, J.M., 2010. Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog. 6, e1000923.
  39. Webb, B.A., Beckage, N.E., Hayakawa, Y., Krell, P.J., Lanzrein, B., Stoltz, D.B., Strand, M.R., Summers, M.D., 2000. Family polydnaviridae. in: van Regenmortel, M.H.V., Faquet, C.M., Bishop, D.H.L., Carstens, E.B., Estes, M.K., Lennon, S.M., Maniloff, J.M., Mayo, A., McGeoch, D.J., Pringle, C.R., Wickner, R.B. (Eds.), Virus taxonomy. Academic Press, New York. pp. 253-260.
  40. Webb, B.A., Strand, M.R., Dickey, S.E., Beck, M.H., Hilgarth, R.S., Kadash, K., Kroemer, J.A., Lindstorm, K.G., Rattanadechakul, W., Shelby, K.S., Thoetkiattikul, H., Turnbull, M.W., Witherell, R.A., Barney, W.E., 2006. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347, 160-174.
  41. Wyler, T., Lanzrein, B., 2003. Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J. Gen. Virol. 84, 1151-1163.