DOI QR코드

DOI QR Code

S-allylcysteine-mediated Activation of Caspases and Inactivation of PARP to Inhibit Proliferation of HeLa

S-allylcysteine 매개 caspases의 활성화 및 PARP의 불활성화를 통한 HeLa 세포주의 증식 억제효과

  • Kim, Hyun Hee (Department of Animal Science, Division of Applied Life Science (BK21 plus), Gyeongsang National University) ;
  • Kong, Il-Keun (Department of Animal Science, Division of Applied Life Science (BK21 plus), Gyeongsang National University) ;
  • Min, Gyesik (Department of Nursing, College of Life Science, Gyeongnam National University of Science & Technology)
  • 김현희 (경상대학교 응용생명과학부) ;
  • 공일근 (경상대학교 응용생명과학부) ;
  • 민계식 (경남과학기술대학교 생명과학대학 간호학과)
  • Received : 2016.12.23
  • Accepted : 2017.02.10
  • Published : 2017.02.28

Abstract

Our previous study suggested that S-allylcysteine (SAC) inhibits the proliferation of the human cervical cancer cell line, HeLa, at least in part through the induction of apoptosis and cell cycle arrest. To further analyze the specific molecular mechanism(s) by which SAC mediates its antiproliferative effects, this study examined the role of SAC in regulating the protein expression of initiator caspase (caspase-9), effector caspases (caspase-3 and caspase-7), and poly-ADP-ribose polymerase (PARP) in HeLa. Western blot analysis showed that when cells were treated with 50 mM SAC for 48 hr, the expression of procaspase-3, -7, and -9 and PARP was reduced by 94%, 38%, 95%, and 64%, respectively, as compared to the untreated control. In contrast, the expression of caspase-3, -7, and -9 and cleaved-PARP was markedly increased by SAC treatment. The SAC-mediated changes in the expression of these proteins were correlated with the concomitant inhibition of cellular proliferation by SAC. The cell proliferation assay showed that HeLa treatment with more than 20 mM SAC for 6-48 hr resulted in both concentration- and time-dependent inhibition of cellular proliferation. These results indicate that the SAC-induced antiproliferative effect in HeLa may be mediated at least in part through the activation of caspase-9, followed by the activation of caspase-3 and caspase-7 as well as the inactivation of PARP, thus leading to cellular apoptosis.

Acknowledgement

Supported by : 경남과학기술대학교

References

  1. Algeciras-Schimnich, A., Pietras, E. M., Barnhart, B. C., Legembre, P., Vijayan, S., Holbeck, S. L. and Peter, M. E. 2003. Two CD95 tumor classes with different sensitivities to antitumor drugs. Proc. Natl. Acad. Sci. USA 100, 11445-11450. https://doi.org/10.1073/pnas.2034995100
  2. Ariga, K., Li, J., Fei, J., Ji, Q. and Hill, J. P. 2016. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv. Mater. 28, 1251-1286. https://doi.org/10.1002/adma.201502545
  3. Ashkenazi, A. and Dixit, V. M. 1998. Death receptors: signaling and modulation. Science 281, 1305-1308. https://doi.org/10.1126/science.281.5381.1305
  4. Butt, M. S., Sultan, M. T., Butt, M. S. and Iqbal, J. 2009. Garlic: nature's protection against physiological threats. Crit. Rev. Food Sci. Nutr. 49, 538-551. https://doi.org/10.1080/10408390802145344
  5. Chu, Q., Lee, D. T., Tsao, S. W., Wang, X. and Wong, Y. C. 2007. S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen-independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU Int. 99, 925-932. https://doi.org/10.1111/j.1464-410X.2006.06639.x
  6. Desagher, S. and Martinou, J. C. 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369-377. https://doi.org/10.1016/S0962-8924(00)01803-1
  7. Gapter, L. A., Yuin, O. Z. and Ng, K. Y. 2008. S-Allylcysteine reduces breast tumor cell adhesion and invasion. Biochem. Biophys. Res. Commun. 367, 446-451. https://doi.org/10.1016/j.bbrc.2007.12.175
  8. Green, D. R. and Reed, J. C. 1998. Mitochondria and apoptosis. Science 281, 1309-1312. https://doi.org/10.1126/science.281.5381.1309
  9. Iciek, M., Kwiecien, I., Chwatko, G., Sokolowska-Jezewicz, M., Kowalczyk-Pachel, D. and Rokita, H. 2011. The effects of garlic-derived sulfur compounds on cell proliferation, caspase 3 activity, thiol levels and anaerobic sulfur metabolism in human hepatoblastoma HepG2 cells. Cell Biochem. Funct. 30, 198-204.
  10. Isabelle, M., Moreel, X., Gagne, J. P., Rouleau, M., Ethier, C., Gagne, P., Hendzel, M. J. and Poirier, G. G. 2010. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 8, 22. https://doi.org/10.1186/1477-5956-8-22
  11. Jia, J., Furlan, A., Gonzalez-Hilarion, S., Leroy, C., Gruenert, D. C., Tulasne, D. and Lejeune, F. 2015. Caspases shutdown nonsense-mediated mRNA decay during apoptosis. Cell Death Differ. 22, 1754-1763. https://doi.org/10.1038/cdd.2015.18
  12. Jimenez, F., Aiba-Masago, S., AI, Hashimi. I., Vela-Roch, N., Fernandes, G., Yeh, C. K,, Talal, N. and Dang, H. 2002. Activated caspase 3 and cleaved poly(ADP-ribose)polymerase in salivary epithelium suggest a pathogenetic mechanism for Sjogren's syndrome. Rheumatology (Oxford) 41, 338-342. https://doi.org/10.1093/rheumatology/41.3.338
  13. Jin, Z. and El-Deiry, W. S. 2005. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139-163.
  14. Kim, H. H., Kong, I. K. and Min, G. 2015. Anticarcinogenic effect of S-allylcysteine (SAC). J. Life Sci. 25, 101-107. https://doi.org/10.5352/JLS.2015.25.1.101
  15. Kim, H. H. and Min, G. 2015. Inhibitory effects of S-allylcysteine on cell proliferation of human cervical cancer cell line, HeLa. J. Life Sci. 25, 101-109. https://doi.org/10.5352/JLS.2015.25.1.101
  16. Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H. and Peter, M. E. 1995. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579-5588.
  17. Klener, P. Jr., Andera, L., Klener, P., Necas, E. and Zivny, J. 2006. Cell death signalling pathways in the pathogenesis and therapy of haematologic malignancies: overview of therapeutic approaches. Folia Biol (Praha). 52, 119-136.
  18. Kroemer, G., Dallaporta, B. and Resche-Rigon, M. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619-642. https://doi.org/10.1146/annurev.physiol.60.1.619
  19. Kwon, S. B., Kim, M. J., Yang, J. M., Lee, H. P., Hong, J. T., Jeong, H. S., Kim, E. S. and Yoon, D. Y. 2016. Cudrania tricuspidata stem extract induces apoptosis via the extrinsic pathway in SiHa cervical cancer cells. PLoS One 11, e0150235. https://doi.org/10.1371/journal.pone.0150235
  20. Lavrik, I., Golks, A. and Krammer, P. H. 2005. Death receptor signaling. J. Cell Sci. 118, 265-267. https://doi.org/10.1242/jcs.01610
  21. Liu, Z., Li, M., Chen, K., Yang, J., Chen, R., Wang, T., Liu, J., Yang, W. and Ye, Z. 2012. S-allylcysteine induces cell cycle arrest and apoptosis in androgen-independent human prostate cancer cells. Mol. Med. Rep. 5, 439-443.
  22. Los, M., Mozoluk, M., Ferrari, D., Stepczynska, A., Stroh, C., Renz, A., Herceg, Z., Wang, Z. Q. and Schulze-Osthoff, K. 2002. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978-988. https://doi.org/10.1091/mbc.01-05-0272
  23. MacKenzie, S. H. and Clark, A. C. 2012. Death by caspase dimerization. Adv. Exp. Med. Biol. 747, 55-73.
  24. Ng, K. T., Guo, D. Y., Cheng, Q., Geng, W., Ling, C. C., Li, C. X., Liu, X. B., Ma, Y. Y., Lo, C. M., Poon, R. T., Fan, S. T. and Man, K. 2012. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One 7, e31655. https://doi.org/10.1371/journal.pone.0031655
  25. Nobili, S., Lippi, D., Witort, E., Donnini, M., Bausi, L., Mini, E. and Capaccioli, S. 2009. Natural compounds for cancer treatment and prevention. Pharmacol. Res. 59, 365-378. https://doi.org/10.1016/j.phrs.2009.01.017
  26. Plati, J., Bucur, O. and Khosravi-Far, R. 2011. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol (Camb). 3, 279-296. https://doi.org/10.1039/c0ib00144a
  27. Rodriguez, J. and Lazebnik, Y. 1999. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179-3194. https://doi.org/10.1101/gad.13.24.3179
  28. Schneider, P. and Tschopp, J. 2000. Apoptosis induced by death receptors. Pharm. Acta. Helv. 74, 281-286. https://doi.org/10.1016/S0031-6865(99)00038-2
  29. Seol, H. J., Ulak, R., Ki, K. D. and Lee, J. M. 2014. Cytotoxic and targeted systemic therapy in advanced and recurrent cervical cancer: experience from clinical trials. Tohoku J. Exp. Med. 232, 269-276. https://doi.org/10.1620/tjem.232.269
  30. Shi, W. Y., Cao, C. and Liu, L. 2016. Interferon ${\alpha}$ induces the apoptosis of cervical cancer HeLa cells by activating both the intrinsic mitochondrial pathway and endoplasmic reticulum stress-induced pathway. Int. J. Mol. Sci. 17, E1832. https://doi.org/10.3390/ijms17111832
  31. Shi, Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459-470. https://doi.org/10.1016/S1097-2765(02)00482-3
  32. Tang, F. Y., Chiang, E. P., Chung, J. G., Lee, H. Z. and Hsu, C. Y. 2009. S-allylcysteine modulates the expression of E-cadherin and inhibits the malignant progression of human oral cancer. J. Nutr. Biochem. 20, 1013-1020. https://doi.org/10.1016/j.jnutbio.2008.09.007
  33. Wilson, N. S., Dixit, V. and Ashkenazi, A. 2009. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10, 348-355. https://doi.org/10.1038/ni.1714
  34. Xiong, S., Mu, T., Wang, G. and Jiang, X. 2014. Mitochondria-mediated apoptosis in mammals. Protein Cell 5, 737-749. https://doi.org/10.1007/s13238-014-0089-1
  35. Xu, Y. S., Feng, J. G., Zhang, D., Luo, M., Su, D. and Lin, N. M. 2014. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacol. Sin. 35, 267-274. https://doi.org/10.1038/aps.2013.176
  36. Zhou, Y., Zhuang, W., Hu, W., Liu, G. J., Wu, T. X. and Wu, X. T. 2011. Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis. Gastroenterology 141, 80-89. https://doi.org/10.1053/j.gastro.2011.03.057