DOI QR코드

DOI QR Code

A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/crystalline Silicon Heterojunction Solar Cell

이종접합 실리콘 태양전지 적용을 위한 선택적 전하접합 층으로의 전이금속산화물에 관한 연구

  • Kim, Yongjun (College of Infomation and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Sunbo (Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Youngkuk (College of Infomation and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Young Hyun (College of Infomation and Communication Engineering, Sungkyunkwan University) ;
  • Park, Chang-kyun (Solar R&D division, JUSUNG Engineering Co. Ltd.) ;
  • Yi, Junsin (College of Infomation and Communication Engineering, Sungkyunkwan University)
  • 김용준 (성균관대학교 정보통신대학) ;
  • 김선보 (성균관대학교 에너지과학과) ;
  • 김영국 (성균관대학교 정보통신대학) ;
  • 조영현 (성균관대학교 정보통신대학) ;
  • 박창균 (주성엔지니어링 Solar R&D Division) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Received : 2017.02.06
  • Accepted : 2017.02.10
  • Published : 2017.03.01

Abstract

Hydrogenated Amorphous Silicon (a-Si:H) is used as an emitter layer in HIT (heterojunction with Intrinsic Thin layer) solar cells. Its low band gap and low optical properties (low transmittance and high absorption) cause parasitic absorption on the front side of a solar cell that significantly reduces the solar cell blue response. To overcome this, research on CSC (carrier Selective Contacts) is being actively carried out to reduce carrier recombination and improve carrier transportation as a means to approach the theoretical efficiency of silicon solar cells. Among CSC materials, molybdenum oxide ($MoO_x$) is most commonly used for the hole transport layer (HTL) of a solar cell due to its high work function and wide band gap. This paper analyzes the electrical and optical properties of $MoO_x$ thin films for use in the HTL of HIT solar cells. The optical properties of $MoO_x$ show better performance than a-Si:H and ${\mu}c-SiO_x:H$.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. M. Bivour, J. Temmler, F. Zahringer, S. Glunz, and M. Hermle, Proc. IEEE 43rd PVSC (Portland, USA, 2016) p. 0215.
  2. N. Espinosa, H. F. Dam, D. M. Tanenbaum, J. W. Andreasen, M. Jorgensen, and F. C. Krebs, Materials, 4, 169 (2011). [DOI: https://doi.org/10.3390/ma4010169] https://doi.org/10.3390/ma4010169
  3. J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, Appl. Phys. Lett., 105, 232109-5 (2014). [DOI: https://doi.org/10.1063/1.4903467] https://doi.org/10.1063/1.4903467
  4. J. Bullock, D. Yan, A. Cuevas, Y. Wans, and C. Samundsett, Energy Procedia, 77, 446 (2015). [DOI: https://doi.org/10.1016/j.egypro.2015.07.063] https://doi.org/10.1016/j.egypro.2015.07.063
  5. J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H. Y. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson, and M. C. Beard, Nano Lett., 11, 3263 (2011). [DOI: https://doi.org/10.1021/nl2015729] https://doi.org/10.1021/nl2015729
  6. C. Battaglia, X. Yin, M. Zheng, I. D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, Nano Lett., 14, 967 (2014). [DOI: https://doi.org/10.1021/nl404389u] https://doi.org/10.1021/nl404389u
  7. S. I. Park, S. J. Baik, J. S. Im, L. Fang, J. W. Jeon, and K. S. Lim, Appl. Phys. Lett., 99, 063504 (2011). [DOI: https://doi.org/10.1063/1.3624591] https://doi.org/10.1063/1.3624591
  8. J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, Energy Precedia, 77, 446 (2015). [DOI: https://doi.org/10.1016/j.egypro.2015.07.063] https://doi.org/10.1016/j.egypro.2015.07.063
  9. F. Li, S. Run, Y. Xu, F. Meng, J. Wang, W. Chen, and L. Shen, Sol. Energy Mater. Sol. Cells., 95, 877 (2011). [DOI: https://doi.org/10.1016/j.solmat.2010.11.009] https://doi.org/10.1016/j.solmat.2010.11.009
  10. M. Bivour, B. Maccom, J. Temmler, W.M.M. Kessels, and M. Hermle, Energy Procedia, 92, 433 (2016). [DOI: https://doi.org/10.1016/j.egypro.2016.07.125]
  11. J. Geissbuhler, J. Werner, S.M.D. Nicolas, L. Barraud, A. H. Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, and C. Ballif, Appl. Phys. Lett., 107, 081601-5 (2015). [DOI: https://doi.org/10.1063/1.4928747] https://doi.org/10.1063/1.4928747
  12. O. Y. Khyzhun, V. L. Bekenev, and Y. M. Solonin, J. Alloys Compd., 459, 22 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2007.04.281] https://doi.org/10.1016/j.jallcom.2007.04.281
  13. G. Andersson and A. Magneli, Acta Chem. Scand., 4, 793 (1950). [DOI: https://doi.org/10.3891/acta.chem.scand.04-0793] https://doi.org/10.3891/acta.chem.scand.04-0793
  14. H. Sitepu, B. H. O'Connor, and D. Li, J. Appl. Cryst., 38, 158 (2005). [DOI: https://doi.org/10.1107/S0021889804031231] https://doi.org/10.1107/S0021889804031231
  15. F. Cora, A. Patel, N. M. Harrison, C. Roetti, and C.R.A. Catlow, J. Mater. Chem., 7, 959 (1997). [DOI: https://doi.org/10.1039/a607439a] https://doi.org/10.1039/a607439a
  16. M. Bivour, C. Reichel, M. Hermle, S. W. Glunz, Sol. Energy Mater. Sol. Cells., 106, 11 (2012). [DOI: https://doi.org/10.1016/j.solmat.2012.06.036] https://doi.org/10.1016/j.solmat.2012.06.036
  17. Y. Liu, Y. Sun, W. Liu, and J. Yao, Phys. Chem., 16, 15400 (2014).
  18. M. Bivour, B. Macco, J. Temmler, W.M.M. Kessels, and M. Hermle, Energy Procedia, 92, 443 (2016). [DOI: https://doi.org/10.1016/j.egypro.2016.07.125] https://doi.org/10.1016/j.egypro.2016.07.125