Facile Synthesis of Vertically Aligned CdTe-Si Nanostructures with High Density

수직배양된 고집적 CdTe-Si 나노구조체의 제조방법

  • Im, Jinho (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Sung-hwan (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Hyunsung (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology)
  • 임진호 (한국세라믹기술원 나노융합소재센터) ;
  • 황성환 (한국세라믹기술원 나노융합소재센터) ;
  • 정현성 (한국세라믹기술원 나노융합소재센터)
  • Received : 2016.08.22
  • Accepted : 2017.01.31
  • Published : 2017.03.01


Cadmium compounds with one dimension (1D) nanostructures have attracted attention for their excellent electrical and optical properties. In this study, vertically aligned CdTe-Si nanostructures with high density were synthesized by several simple chemical reactions. First, l D Te nanostructures were synthesized by silver assisted chemical Si wafer etching followed by a galvanic displacement reaction of the etched Si nanowires. Nanowire length was controlled from 1 to $25{\mu}m$ by adjusting etching time. The Si nanowire galvanic displacement reaction in $HTeO_2{^+}$ electrolyte created hybrid 1D Te-branched Si nanostructures. The sequential topochemical reaction resulted in $Ag_2Te-Si$ nanostructures, and the cation exchange reaction with the hybrid 1D Te-branched Si nanostructures resulted in CdTe-Si nanostructures. Wet chemical processes including metal assisted etching, galvanic displacement, topochemical and cation exchange reactions are proposed as simple routes to fabricate large scale, vertically aligned CdTe-Si hybrid nanostructures with high density.


Supported by : 한국산업기술평가관리원, 한국세라믹기술원


  1. A. Henglein, J. Phys. Chem., 84, 3461 (1980). [DOI:]
  2. S. Majetich, J. Artman, M. McHenry, N. Nuhfer, and S. Staley, Phys. Rev. B, 48, 16845 (1993). [DOI:]
  3. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc., 120, 1959 (1998). [DOI: ja972332i]
  4. Z. Tang, N. A. Kotov, and M. Giersig, Science, 297, 237 (2002). [DOI:]
  5. Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, and N. A. Kotov, Science, 314, 274 (2006). [DOI:]
  6. C. Ma and Z. L. Wang, Adv. Mater., 17, 2635 (2005). [DOI:]
  7. R. Banerjee, R. Jayakrishnan, and P. Ayyub, J. Phys. Condens. Matter, 12, 10647 (2000). [DOI:]
  8. S. Kar, B. Satpati, P. Satyam, and S. Chaudhuri, J. Phys. Chem. B, 109, 19134 (2005). [DOI:]
  9. S. K. Haram, B. M. Quinn, and A. J. Bard, J. Am. Chem. Soc., 123, 8860 (2001). [DOI:]
  10. H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, Inorg. Chem., 45, 5103 (2006). [DOI:]
  11. X. Mathew, G. W. Thompson, V. Singh, J. McClure, S. Velumani, N. Mathews, and P. Sebastian, Sol. Energ. Mat. Sol. Cells, 76, 293 (2003). [DOI:]
  12. Y. Zhou, Y. Li, H. Zhong, J. Hou, Y. Ding, C. Yang, and Y. Li, Nanotechnology, 17, 4041 (2006). [DOI:]
  13. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002).
  14. W. U. Huynh, X. Peng, and A. P. Alivisatos, Proc. Electrochem. Soc, 99 (1999).
  15. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science, 295, 1506 (2002). [DOI:]
  16. B. Dabbousi, M. Bawendi, O. Onitsuka, and M. Rubner, Appl. Phys. Lett., 66, 1316 (1995). [DOI:]
  17. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, Nano Lett., 2, 817 (2002). [DOI:]
  18. N. N. Mamedova, N. A. Kotov, A. L. Rogach, and J. Studer, Nano Lett., 1, 281 (2001). [DOI:]
  19. J. Rockenberger, L. Troger, A. L. Rogach, M. Tischer, M. Grundmann, A. Eychmuller, and H. Weller, J. Chem. Phys., 108, 7807 (1998). [DOI:]
  20. K. Mitchell, A. L. Fahrenbruch, and R. H. Bube, J. Appl. Phys., 48, 829 (1977). [DOI:]
  21. Z. Huang, H. Fang, and J. Zhu, Adv. Mater., 19, 744 (2007). [DOI:]
  22. K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, Appl. Phys. Lett., 90, 163123 (2007). [DOI:]
  23. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, Chemistry, 12, 7942 (2006). [DOI:]
  24. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, Adv. Funct. Mater., 16, 387 (2006). [DOI: adfm.200500392]
  25. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, Small, 1, 1062 (2005). [DOI:]
  26. M. Zhang, J. Kim, S. Kim, H. Park, H. Jung, N. G. Ndifor-Angwafor, J. Lim, Y. Choa, and N. V. Myung, Chem. Mater., 26, 2557 (2014). [DOI:]
  27. H. Park, H. Jung, M. Zhang, C. H. Chang, N. G. Ndifor-Angwafor, Y. Choa, and N. V. Myung, Nanoscale, 5, 3058 (2013). [DOI:]
  28. H. Jung, H. Suh, C. M. Hangarter, J. H. Lim, Y. I. Lee, Y. H. Choa, K. Hong, and N. V. Myung, Appl. Phys. Lett., 100, 223105 (2012). [DOI:]
  29. J. H. Lim, G. J. Shin, T. Y. Hwang, H. R. Lim, Y. I. Lee, K. H. Lee, S. D. Kim, M. W. Oh, S. D. Park, N. V. Myung, and Y. H. Choa, Nanoscale, 6, 11697 (2014). [DOI:]
  30. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature, 415, 617 (2002). [DOI:]
  31. B. Yoo, C. K. Huang, J. Lim, J. Herman, M. Ryan, J. P. Fleurial, and N. Myung, Electrochim. Acta, 50, 4371 (2005). [DOI:]
  32. J. Barnes, J. Rayne, and R. Ure, Phys. Lett. A, 44, 215 (1973). [DOI:]
  33. S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson, and J. R. Meyer, Appl. Phys. Lett., 75, 1401 (1999). [DOI:]
  34. C. H. Chang, Y. Rheem, Y. H. Choa, D. Y. Park, and N. V. Myung, Electrochim. Acta, 55, 1072 (2010). [DOI:]
  35. M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, J. Electrochem. Soc., 149, C546 (2002). [DOI:]