DOI QR코드

DOI QR Code

Facile Synthesis of Vertically Aligned CdTe-Si Nanostructures with High Density

수직배양된 고집적 CdTe-Si 나노구조체의 제조방법

  • Im, Jinho (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Sung-hwan (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Hyunsung (Nano-Convergence Material Center, Korea Institute of Ceramic Engineering and Technology)
  • 임진호 (한국세라믹기술원 나노융합소재센터) ;
  • 황성환 (한국세라믹기술원 나노융합소재센터) ;
  • 정현성 (한국세라믹기술원 나노융합소재센터)
  • Received : 2016.08.22
  • Accepted : 2017.01.31
  • Published : 2017.03.01

Abstract

Cadmium compounds with one dimension (1D) nanostructures have attracted attention for their excellent electrical and optical properties. In this study, vertically aligned CdTe-Si nanostructures with high density were synthesized by several simple chemical reactions. First, l D Te nanostructures were synthesized by silver assisted chemical Si wafer etching followed by a galvanic displacement reaction of the etched Si nanowires. Nanowire length was controlled from 1 to $25{\mu}m$ by adjusting etching time. The Si nanowire galvanic displacement reaction in $HTeO_2{^+}$ electrolyte created hybrid 1D Te-branched Si nanostructures. The sequential topochemical reaction resulted in $Ag_2Te-Si$ nanostructures, and the cation exchange reaction with the hybrid 1D Te-branched Si nanostructures resulted in CdTe-Si nanostructures. Wet chemical processes including metal assisted etching, galvanic displacement, topochemical and cation exchange reactions are proposed as simple routes to fabricate large scale, vertically aligned CdTe-Si hybrid nanostructures with high density.

Acknowledgement

Supported by : 한국산업기술평가관리원, 한국세라믹기술원

References

  1. A. Henglein, J. Phys. Chem., 84, 3461 (1980). [DOI: https://doi.org/10.1021/j100462a031] https://doi.org/10.1021/j100462a031
  2. S. Majetich, J. Artman, M. McHenry, N. Nuhfer, and S. Staley, Phys. Rev. B, 48, 16845 (1993). [DOI: https://doi.org/10.1103/PhysRevB.48.16845] https://doi.org/10.1103/PhysRevB.48.16845
  3. J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and R. L. Letsinger, J. Am. Chem. Soc., 120, 1959 (1998). [DOI: https://doi.org/10.1021/ ja972332i] https://doi.org/10.1021/ja972332i
  4. Z. Tang, N. A. Kotov, and M. Giersig, Science, 297, 237 (2002). [DOI: https://doi.org/10.1126/science.1072086] https://doi.org/10.1126/science.1072086
  5. Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, and N. A. Kotov, Science, 314, 274 (2006). [DOI: https://doi.org/10.1126/science.1128045] https://doi.org/10.1126/science.1128045
  6. C. Ma and Z. L. Wang, Adv. Mater., 17, 2635 (2005). [DOI: https://doi.org/10.1002/adma.200500805] https://doi.org/10.1002/adma.200500805
  7. R. Banerjee, R. Jayakrishnan, and P. Ayyub, J. Phys. Condens. Matter, 12, 10647 (2000). [DOI: https://doi.org/10.1088/0953-8984/12/50/325] https://doi.org/10.1088/0953-8984/12/50/325
  8. S. Kar, B. Satpati, P. Satyam, and S. Chaudhuri, J. Phys. Chem. B, 109, 19134 (2005). [DOI: https://doi.org/10.1021/jp052600w] https://doi.org/10.1021/jp052600w
  9. S. K. Haram, B. M. Quinn, and A. J. Bard, J. Am. Chem. Soc., 123, 8860 (2001). [DOI: https://doi.org/10.1021/ja0158206] https://doi.org/10.1021/ja0158206
  10. H. Cao, G. Wang, S. Zhang, X. Zhang, and D. Rabinovich, Inorg. Chem., 45, 5103 (2006). [DOI: https://doi.org/10.1021/ic060440c] https://doi.org/10.1021/ic060440c
  11. X. Mathew, G. W. Thompson, V. Singh, J. McClure, S. Velumani, N. Mathews, and P. Sebastian, Sol. Energ. Mat. Sol. Cells, 76, 293 (2003). [DOI: https://doi.org/10.1016/S0927-0248(02)00281-7] https://doi.org/10.1016/S0927-0248(02)00281-7
  12. Y. Zhou, Y. Li, H. Zhong, J. Hou, Y. Ding, C. Yang, and Y. Li, Nanotechnology, 17, 4041 (2006). [DOI: https://doi.org/10.1088/0957-4484/17/16/008] https://doi.org/10.1088/0957-4484/17/16/008
  13. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science, 295, 2425 (2002). https://doi.org/10.1126/science.1069156
  14. W. U. Huynh, X. Peng, and A. P. Alivisatos, Proc. Electrochem. Soc, 99 (1999).
  15. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science, 295, 1506 (2002). [DOI: https://doi.org/10.1126/science.1068153] https://doi.org/10.1126/science.1068153
  16. B. Dabbousi, M. Bawendi, O. Onitsuka, and M. Rubner, Appl. Phys. Lett., 66, 1316 (1995). [DOI: https://doi.org/10.1063/1.113227] https://doi.org/10.1063/1.113227
  17. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, Nano Lett., 2, 817 (2002). [DOI: https://doi.org/10.1021/nl0255193] https://doi.org/10.1021/nl0255193
  18. N. N. Mamedova, N. A. Kotov, A. L. Rogach, and J. Studer, Nano Lett., 1, 281 (2001). [DOI: https://doi.org/10.1021/nl015519n] https://doi.org/10.1021/nl015519n
  19. J. Rockenberger, L. Troger, A. L. Rogach, M. Tischer, M. Grundmann, A. Eychmuller, and H. Weller, J. Chem. Phys., 108, 7807 (1998). [DOI: https://doi.org/10.1063/1.476216] https://doi.org/10.1063/1.476216
  20. K. Mitchell, A. L. Fahrenbruch, and R. H. Bube, J. Appl. Phys., 48, 829 (1977). [DOI: https://doi.org/10.1063/1.323636] https://doi.org/10.1063/1.323636
  21. Z. Huang, H. Fang, and J. Zhu, Adv. Mater., 19, 744 (2007). [DOI: https://doi.org/10.1002/adma.200600892] https://doi.org/10.1002/adma.200600892
  22. K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, Appl. Phys. Lett., 90, 163123 (2007). [DOI: https://doi.org/10.1063/1.2724897] https://doi.org/10.1063/1.2724897
  23. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan, and S. Lee, Chemistry, 12, 7942 (2006). [DOI: https://doi.org/10.1002/chem.200600032] https://doi.org/10.1002/chem.200600032
  24. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, Adv. Funct. Mater., 16, 387 (2006). [DOI: https://doi.org/10.1002/ adfm.200500392] https://doi.org/10.1002/adfm.200500392
  25. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, Small, 1, 1062 (2005). [DOI: https://doi.org/10.1002/smll.200500137] https://doi.org/10.1002/smll.200500137
  26. M. Zhang, J. Kim, S. Kim, H. Park, H. Jung, N. G. Ndifor-Angwafor, J. Lim, Y. Choa, and N. V. Myung, Chem. Mater., 26, 2557 (2014). [DOI: https://doi.org/10.1021/cm4041067] https://doi.org/10.1021/cm4041067
  27. H. Park, H. Jung, M. Zhang, C. H. Chang, N. G. Ndifor-Angwafor, Y. Choa, and N. V. Myung, Nanoscale, 5, 3058 (2013). [DOI: https://doi.org/10.1039/c3nr00060e] https://doi.org/10.1039/c3nr00060e
  28. H. Jung, H. Suh, C. M. Hangarter, J. H. Lim, Y. I. Lee, Y. H. Choa, K. Hong, and N. V. Myung, Appl. Phys. Lett., 100, 223105 (2012). [DOI: https://doi.org/10.1063/1.4722919] https://doi.org/10.1063/1.4722919
  29. J. H. Lim, G. J. Shin, T. Y. Hwang, H. R. Lim, Y. I. Lee, K. H. Lee, S. D. Kim, M. W. Oh, S. D. Park, N. V. Myung, and Y. H. Choa, Nanoscale, 6, 11697 (2014). [DOI: https://doi.org/10.1039/C4NR02469A] https://doi.org/10.1039/C4NR02469A
  30. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature, 415, 617 (2002). [DOI: https://doi.org/10.1038/415617a] https://doi.org/10.1038/415617a
  31. B. Yoo, C. K. Huang, J. Lim, J. Herman, M. Ryan, J. P. Fleurial, and N. Myung, Electrochim. Acta, 50, 4371 (2005). [DOI: https://doi.org/10.1016/j.electacta.2005.02.016] https://doi.org/10.1016/j.electacta.2005.02.016
  32. J. Barnes, J. Rayne, and R. Ure, Phys. Lett. A, 44, 215 (1973). [DOI: https://doi.org/10.1016/0375-9601(73)90888-8] https://doi.org/10.1016/0375-9601(73)90888-8
  33. S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson, and J. R. Meyer, Appl. Phys. Lett., 75, 1401 (1999). [DOI: https://doi.org/10.1063/1.124707] https://doi.org/10.1063/1.124707
  34. C. H. Chang, Y. Rheem, Y. H. Choa, D. Y. Park, and N. V. Myung, Electrochim. Acta, 55, 1072 (2010). [DOI: https://doi.org/10.1016/j.electacta.2009.09.066] https://doi.org/10.1016/j.electacta.2009.09.066
  35. M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, and A. M. Stacy, J. Electrochem. Soc., 149, C546 (2002). [DOI: https://doi.org/10.1149/1.1509459] https://doi.org/10.1149/1.1509459