DOI QR코드

DOI QR Code

Annealing Effects on Ambipolar Characteristics of Diketopyrrolopyrrole-Based Polymer Thin-Film Transistors

Annealing 효과가 Diketopyrrolopyrrole 기반 고분자 박막 트랜지스터의 양극성 특성에 미치는 영향

  • Yoon, Gyu Bok (Department of Graphic Arts Information Engineering, Pukyong National University) ;
  • Lee, Jiyoul (Department of Graphic Arts Information Engineering, Pukyong National University)
  • 윤규복 (부경대학교 인쇄정보공학과) ;
  • 이지열 (부경대학교 인쇄정보공학과)
  • Received : 2017.01.04
  • Accepted : 2017.02.06
  • Published : 2017.03.01

Abstract

In this study, we examine the electrical properties of diketopyrrolopyrrole (DPP) containing polymer semiconductors that have been reported to show high performance with ambipolar characteristics. We prepared three different DPP based polymer semiconductors (PDPPTPT, PDPP3T, and PDPP2T-TT) and fabricated organic thin film transistors (OTFTs) with ambipolar polymer semiconductors as an active layer. All three DPP polymers showed only p-type properties at initial measurements. However, after annealing in vacuum oven for 24 hours, it was found that the DPP based polymers have both p-type and n-type properties. It is speculated that the residual impurities supposedly regarded as a strong electron trap source were eliminated during the vacuum process.

Acknowledgement

Supported by : 부경대학교

References

  1. G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater., 22, 3778 (2010). [https://doi.org/10.1002/adma.200903559] https://doi.org/10.1002/adma.200903559
  2. T. Someya, Stretchable Electronics (Wiley-VCH Cerlag Gmbh & Co. KGaA, Weinheim) (2013) p. 271.
  3. E. Cantatore, Applications of Organic and Printed Electronics (Springer, Heidelberg, 2013) p. 3. [DOI: https://doi.org/10.1007/978-1-4614-3160-2]
  4. J. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 527 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.9.52]
  5. C. B. Nielsen, M. Turbiez, and I. McCulloch, Adv. Mater., 25, 1859 (2013). [DOI: https://doi.org/10.1002/adma.201201795] https://doi.org/10.1002/adma.201201795
  6. J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, Sci. Rep., 2, 754 (2012). https://doi.org/10.1038/srep00754
  7. J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger, and F. Wudl, J. Am. Chem. Soc., 133, 20799 (2011). [DOI: https://doi.org/10.1021/ja205566w] https://doi.org/10.1021/ja205566w
  8. J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. Lee, K. Kim, M. J. Ko, D. H. Choi, B. S. Kim, and J. H. Cho, Chem. Mater., 24, 1316 (2012). [DOI: https://doi.org/10.1021/cm2037487] https://doi.org/10.1021/cm2037487
  9. J. C. Bijleveld, V. S. Gevaerts, D. D. Nuzzo, M. Turbiez, S.G.J. Mathijssen, D. M. de Leeuw, M. M. Wienk, and R.A.J. Janssen, Adv. Mater., 22, E242 (2010). [DOI: https://doi.org/10.1002/adma.201001449] https://doi.org/10.1002/adma.201001449
  10. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, New York, 1981) p. 442.
  11. L. L. Chua, J. Zaumseil, J. F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R. H. Friend, Nature, 434, 194 (2005). [DOI: https://doi.org/10.1038/nature03376] https://doi.org/10.1038/nature03376
  12. O. D. Jurchescu, J. Baas, and T.T.M. Palstra, Appl. Phys. Lett., 87, 052102 (2005). [DOI: https://doi.org/10.1063/1.2001130] https://doi.org/10.1063/1.2001130
  13. C. Goldmann, D. J. Gundlach, and B. Batlogg, Appl. Phys. Lett., 88, 063501 (2006). [DOI: https://doi.org/10.1063/1.2171479] https://doi.org/10.1063/1.2171479
  14. H. T. Nicolai, M. Kuik, G.A.H. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Bredas, and P.W.M. Blom, Nat. Mater., 11, 882 (2012). [DOI: https://doi.org/10.1038/nmat3384] https://doi.org/10.1038/nmat3384