Improvement of the Light Emission Efficiency on Nonpolar a-plane GaN LEDs with SiO2 Current Blocking Layer

무분극 a-plane 질화물계 발광다이오드에서 SiO2 전류 제한 층을 통한 발광 효율 증가

  • Hwang, Seong Joo (Department of Printed Electronics Engineering, Sunchon National University) ;
  • Kwak, Joon Seop (Department of Printed Electronics Engineering, Sunchon National University)
  • 황성주 (순천대학교 인쇄전자공학과) ;
  • 곽준섭 (순천대학교 인쇄전자공학과)
  • Received : 2016.12.23
  • Accepted : 2017.01.26
  • Published : 2017.03.01


In this study, we investigate the $SiO_2$ current blocking layer (CBL) to improve light output power efficiency in nonpolar a-plane (11-20) GaN LEDs on a r-plane sapphire substrate. The $SiO_2$ CBL was produced under the p-pad layer using plasma enhanced chemical vapor deposition (PECVD). The results show that nonpolar GaN LED light output power with the $SiO_2$ CBL is considerably enhanced compared without the $SiO_2$ CBL. This can be attributed to reduced light absorption at the p-pad due to current blocking to the active layer by the $SiO_2$ CBL.


Supported by : 순천대학교


  1. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature, 406, 865 (2000). [DOI:]
  2. S. M. Hwang, Y. G. Seo, K. H. Baik, I. S. Cho, J. H. Baek, S. Jung, T. G. Kim, and M. Cho, Appl. Phys. Lett., 95, 071101 (2009). [DOI:]
  3. C. Chen, V. Adivarahan, J. Yang, M. Shatalov, E. Kuokstis, and M. Asif Khan, Jpn. J. Appl. Phys., 42, L1039 (2003). [DOI: L1039]
  4. Y. G. Seo, K. H. Baik, K. M. Song, S. Lee, H. Yoon, J. H. Park, K. Oh, and S. M. Hwang, Curr. Appl. Phys., 10, 1407 (2010). [DOI:]
  5. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron. Dev., 57, 8 (2010). [DOI:]
  6. E. Sari, S. Nizamoglu, J. H. Choi, S. J. Lee, K. H. Baik, I. H. Lee, J. H. Baek, S. M. Hwang, and H. V. Demir, Opt. Exp., 19, 5442 (2011). [DOI:]
  7. R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, Semicond. Sci. Technol., 27, 024001 (2012). [DOI:]
  8. H. Kim, S. N. Lee, Y. Park, J. S. Kwak, and T. Y. Seong, Appl. Phys. Lett., 93, 032105 (2008). [DOI:]
  9. M. J. Park, S. J. Hwang, H. J. Kim, S. Jung, K. H. Bang, H. G. Kim, Y. Chang, Y. Choi, and J. S. Kwak, J. Disp. Technol., 9, 346 (2013). [DOI:]
  10. M. J. Park, S. K. Oh, T. Jeong, S. Jung, and J. S. Kwak, J. Vac. Sci. Technol. B, 34, 04J111 (2016).
  11. P. S. Hsu, T. H. Matthew, F. Wu, S. P. Denbaars, and J. S. Speck, Appl. Phys. Lett., 100, 021104 (2012). [DOI:]
  12. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, J. Appl. Phys., 92, 2248 (2002). [DOI:]
  13. Y. B. Lee, R. Takaki, H. Sato, Y. Naoi, and S. Sakai, Phys. Stat. Sol., 200, 87 (2003). [DOI:]
  14. H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen, Jpn. J. Appl. Phys., 43, 2006 (2004). [DOI:]
  15. K. H. Baik, Y. G. Seo, S. K. Hong, S. Lee, J. Kim, J. S. Son, and S. M. Hwang, IEEE Photonics Technol. Lett., 22, 595 (2010). [DOI:]
  16. H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron. Dev., 57, 88 (2010). [DOI:]