Effect of LaFeO3 Doping on the Ferroelectric and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-Free Piezoceramics

LaFeO3 함량에 따른 (1-x)Bi0.5(Na0.78K0.22)0.5TiO3-xLaFeO3의 강유전, 압전 특성

  • Park, Chun-Kil (Department of Materials Science and Engineering, Inha University) ;
  • Lim, Ji-Ho (Department of Materials Science and Engineering, Inha University) ;
  • Park, Jung-Soo (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology)
  • 박춘길 (인하대학교 신소재공학과) ;
  • 임지호 (인하대학교 신소재공학과) ;
  • 박정수 (한국세라믹기술원 전자소재부품)
  • Received : 2017.01.19
  • Accepted : 2017.02.01
  • Published : 2017.03.01


$(1-x)Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3-xLaFeO_3$ ceramics were fabricated using a solid state reaction method. The microstructural, ferroelectric and piezoelectric properties were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), and polarization hysteresis loops (P-E). XRD results indicated that BNKT ceramic crystal structure modified by $LaFeO_3$ was transformed from a ferroelectric tetragonal to a non-polar pesudo-cubic phase with increased $LaFeO_3$ content. The improved piezoelectric properties resulted from the addition of $LaFeO_3$ up to 3 mol%. The $LaFeO_3$ 3mol% sample showed markedly improved piezoelectric and strain behaviors in comparison with pure BNKT ceramic.


  1. J. Rodel, K. Webber, R, Dittmer, W. Jo, and M. Kimura, J. Eur. Ceram. Soc., 35, 1659 (2015). [DOI:]
  2. C. Hong, H. Kim, B. Choi, H. Han, J. Son, C. Ahn, and W. Jo, J. Materiomics., 2, 1 (2016).
  3. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). [DOI:]
  4. X. Zheng, J. Li, and Y. Zhoi, Acta Mater., 52, 3313 (2004). [DOI:]
  5. J. S. Yun, C. K. Park, J. H. Cho, J. H. Paik, Y. H. Jeong, J. H. Nam, and K. R. Hwang, Mater. Lett., 137, 178 (2014). [DOI:]
  6. D. H. Lee, S. H. Lee, S. G. Lee, K. T. Lee, and Y. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 543 (2011). [DOI:]
  7. B. Wang, L. Luo, F. Ni, P. Du, W. Pi, and H. Chen, J, Alloys Compd., 526, 79 (2012). [DOI:]
  8. R. Sumang, N. Vittayakorn, and T. Bongkarn, Ceram. Int., 39, 409 (2013). [DOI:]
  9. F. Ni, L. Luo, X. Pan, W. Li, and J. Q. Zhu, J. Alloys compd., 541, 150 (2012). [DOI: 2012.06.129]
  10. C. Peng, J. F. Li, P. Jing, and W. Gong, Mater. Lett., 59, 1576 (2005). [DOI:]
  11. J. S. Park, K. T. Lee, J. h. Cho, Y. H. Jeong, J. H. Pailk, and J. S. Yun, J. Korea. Ceram. Soc., 51, 527 (2014). [DOI:]
  12. A. Hussain, C. W. Ahn, A. Ullah., J. S. Lee, and I. W. Kim, Ceramics. Int., 38, 4142 (2012).
  13. J. Rodel, W. Jo, Klaus T. P. Seifer, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009). [DOI:]
  14. Y. Zhang, A. L. Ding, P. S. Qiu, X. Y. He, X. S. Zhemg, H. R. Zeng, and Q. R. Yin, Mater. Sci. Eng., B99, 361 (2003).
  15. K. N. Pham, T. H. Dinh., H. Y. Lee, Y. M. Kong, and J. S. Lee, J. Korean. Ceramics, 49, 267 (2012).
  16. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, Jpn. J. Appl. Phys., 49, 041054 (2010).
  17. A. Ullah, A. Ullah, I, Kim, D. Lee, S. Jeong, and C. Ahn, J. Am. Ceram. Soc., 97, 2476 (2014).
  18. N, Do, H, Lee, C, Yoon, J. Kang, and J. Lee, Trans. Electr. Electron. Mater., 12, 12 (2011).
  19. C. Hong, J. Kang, W. Jo, and J. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 6 (2016). [DOI:]