The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices

3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구

  • Kang, Ey Goo (Department of Photovoltaic Engineering, Far East University)
  • Received : 2017.01.12
  • Accepted : 2017.02.09
  • Published : 2017.03.01


This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.


  1. E. G. Kang and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 15, 758 (2002). [DOI:]
  2. T. J. Nam, H. S. Chung, and E. G. Kang, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 713 (2011). [DOI:]
  3. A. Malvino and D. J. Bates, Electronic Principles (McGraw-Hill College, New York, 2006).
  4. E. Gates, Introduction to Electronics, 4th ed. (Cengage Learning, Delmar, 2001).
  5. S. S. Kyoung, J. H. Seo, Y. H. Kim, J. S. Lee, E. G. Kang, and M. Y. Sung, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 12 (2009). [DOI:]
  6. H. S. Lee, E. G. Kang, A. R. Shin, H. H. Shin, and M. Y. Sung, KIEE, 7 (2006).
  7. W. H. Hayt, Jr., Eng Ineer Ingelect Romagnetics-7/E (Mc Graw-Hill, New York, 2005)