DOI QR코드

DOI QR Code

Alu-Derived Alternative Splicing Events Specific to Macaca Lineages in CTSF Gene

  • Lee, Ja-Rang (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sang-Je (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Young-Hyun (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choe, Se-Hee (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Cho, Hyeon-Mu (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Rae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Sun-Uk (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Ji-Su (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Sim, Bo-Woong (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Song, Bong-Seok (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong, Kang-Jin (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Youngjeon (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Yeung Bae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Philyong (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Huh, Jae-Won (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Chan, Kyu-Tae (National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2016.08.26
  • Accepted : 2017.01.04
  • Published : 2017.02.28

Abstract

Cathepsin F, which is encoded by CTSF, is a cysteine proteinase ubiquitously expressed in several tissues. In a previous study, novel transcripts of the CTSF gene were identified in the crab-eating monkey deriving from the integration of an Alu element-AluYRa1. The occurrence of AluYRa1-derived alternative transcripts and the mechanism of exonization events in the CTSF gene of human, rhesus monkey, and crabeating monkey were investigated using PCR and reverse transcription PCR on the genomic DNA and cDNA isolated from several tissues. Results demonstrated that AluYRa1 was only integrated into the genome of Macaca species and this lineage-specific integration led to exonization events by producing a conserved 3' splice site. Six transcript variants (V1-V6) were generated by alternative splicing (AS) events, including intron retention and alternative 5' splice sites in the 5' and 3' flanking regions of CTSF_AluYRa1. Among them, V3-V5 transcripts were ubiquitously expressed in all tissues of rhesus monkey and crab-eating monkey, whereas AluYRa1-exonized V1 was dominantly expressed in the testis of the crab-eating monkey, and V2 was only expressed in the testis of the two monkeys. These five transcript variants also had different amino acid sequences in the C-terminal region of CTSF, as compared to reference sequences. Thus, species-specific Alu-derived exonization by lineage-specific integration of Alu elements and AS events seems to have played an important role during primate evolution by producing transcript variants and gene diversification.

Keywords

Alternative splicing;Alu;CTSF;exonization;primate

Acknowledgement

Supported by : Korea Research Institute of Bioscience and Biotechnology (KRIBB)

References

  1. Ahn, S.J., Kim, N.Y., Seo, J.S., Je, J.E., Sung, J.H., Lee, S.H., Kim, M.S., Kim, J.K., Chung, J.K., and Lee, H.H. (2009). Molecular cloning, mRNA expression and enzymatic characterization of cathepsin F from olive flounder (Paralichthys olivaceus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 154, 211-220. https://doi.org/10.1016/j.cbpb.2009.06.005
  2. Amit, M., Sela, N., Keren, H., Melamed, Z., Muler, I., Shomron, N., Izraeli, S., and Ast, G. (2007). Biased exonization of transposed elements in duplicated genes: A lesson from the TIF-IA gene. BMC Mol. Biol. 8, 109. https://doi.org/10.1186/1471-2199-8-109
  3. Ast, G. (2004). How did alternative splicing evolve? Nat. Rev. Genet. 5, 773-782.
  4. Bannert, N. and Kurth, R. (2004). Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. USA 101, 14572-14579. https://doi.org/10.1073/pnas.0404838101
  5. Carlsson, H.E., Schapiro, S.J., Farah, I., and Hau, J. (2004). Use of primates in research: a global overview. Am. J. Primatol. 63, 225-237. https://doi.org/10.1002/ajp.20054
  6. Chapman, H.A., Riese, R.J., and Shi, G.P. (1997). Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63-88. https://doi.org/10.1146/annurev.physiol.59.1.63
  7. Chen, M., and Manley, J.L. (2009). Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 10, 741-754. https://doi.org/10.1038/nrm2777
  8. Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N., and Varki, A. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. USA 99, 11736-11741. https://doi.org/10.1073/pnas.182257399
  9. Cowley, M., and Oakey, R.J. (2013). Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet. 9, e1003234. https://doi.org/10.1371/journal.pgen.1003234
  10. Dagan, T., Sorek, R., Sharon, E., Ast, G., and Graur, D. (2004). AluGene: a database of Alu elements incorporated within proteincoding genes. Nucleic Acids Res. 32, D489-492. https://doi.org/10.1093/nar/gkh132
  11. DeBarry, J.D., Ganko, E.W., McCarthy, E.M., and McDonald, J.F. (2006). The contribution of LTR retrotransposon sequences to gene evolution in Mus musculus. Mol. Biol. Evol. 23, 479-481. https://doi.org/10.1093/molbev/msj076
  12. Deininger, P.L., and Batzer, M.A. (1999). Alu repeats and human disease. Mol. Genet. Metab. 67, 183-193. https://doi.org/10.1006/mgme.1999.2864
  13. Duke-Cohan, J.S., Gu, J., McLaughlin, D.F., Xu, Y., Freeman, G.J., and Schlossman, S.F. (1998). Attractin (DPPT-L), a member of the CUB family of cell adhesion and guidance proteins, is secreted by activated human T lymphocytes and modulates immune cell interactions. Proc. Natl. Acad. Sci. USA 95, 11336-11341. https://doi.org/10.1073/pnas.95.19.11336
  14. Gal-Mark, N., Schwartz, S., and Ast, G. (2008). Alternative splicing of Alu exons--two arms are better than one. Nucleic Acids Res. 36, 2012-2023. https://doi.org/10.1093/nar/gkn024
  15. Guicciardi, M.E., Leist, M., and Gores, G.J. (2004). Lysosomes in cell death. Oncogene 23, 2881-2890. https://doi.org/10.1038/sj.onc.1207512
  16. Han, K., Konkel, M.K., Xing, J., Wang, H., Lee, J., Meyer, T.J., Huang, C.T., Sandifer, E., Hebert, K., Barnes, E.W., et al. (2007a). Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 316, 238-240. https://doi.org/10.1126/science.1139462
  17. Han, K., Lee, J., Meyer, T.J., Wang, J., Sen, S.K., Srikanta, D., Liang, P., and Batzer, M.A. (2007b). Alu recombination-mediated structural deletions in the chimpanzee genome. PLoS Genet. 3, 1939-1949.
  18. Hilgard, P., Huang, T., Wolkoff, A.W., and Stockert, R.J. (2002). Translated Alu sequence determines nuclear localization of a novel catalytic subunit of casein kinase 2. Am. J. Physiol. Cell Physiol. 283, C472-483. https://doi.org/10.1152/ajpcell.00070.2002
  19. Huh, J.W., Kim, Y.H., Park, S.J., Kim, D.S., Lee, S.R., Kim, K.M., Jeong, K.J., Kim, J.S., Song, B.S., Sim, B.W., et al. (2012). Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics 13, 163. https://doi.org/10.1186/1471-2164-13-163
  20. Jeric, B., Dolenc, I., Mihelic, M., Klaric, M., Zavasnik-Bergant, T., Guncar, G., Turk, B., Turk, V. and Stoka, V. (2013). N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions. Biochim. Biophys. Acta 1833, 2254-2266. https://doi.org/10.1016/j.bbamcr.2013.05.007
  21. Kim, T., Kim, J.O., Oh, J.G., Hong, S.E., and Kim do, H. (2014). Pressure-overload cardiac hypertrophy is associated with distinct alternative splicing due to altered expression of splicing factors. Mol. Cells 37, 81-87. https://doi.org/10.14348/molcells.2014.2337
  22. Kim, Y.H., Choe, S.H., Song, B.S., Park, S.J., Kim, M.J., Park, Y.H., Yoon, S.B., Lee, Y., Jin, Y.B., Sim, B.W., et al. (2016). Macaca specific exon creation event generates a novel ZKSCAN5 transcript. Gene 577, 236-243. https://doi.org/10.1016/j.gene.2015.11.051
  23. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
  24. Lee, J.R., Huh, J.W., Kim, D.S., Ha, H.S., Ahn, K., Kim, Y.J., Chang, K.T., and Kim, H.S. (2009). Lineage specific evolutionary events on SFTPB gene: Alu recombination-mediated deletion (ARMD), exonization, and alternative splicing events. Gene 435, 29-35. https://doi.org/10.1016/j.gene.2009.01.008
  25. Lev-Maor, G., Sorek, R., Shomron, N., and Ast, G. (2003). The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science 300, 1288-1291. https://doi.org/10.1126/science.1082588
  26. Li, J., Han, K., Xing, J., Kim, H.S., Rogers, J., Ryder, O.A., Disotell, T., Yue, B., and Batzer, M.A. (2009). Phylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements. Gene 448, 242-249. https://doi.org/10.1016/j.gene.2009.05.013
  27. Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., and Misteli, T. (2010). Regulation of alternative splicing by histone modifications. Science 327, 996-1000. https://doi.org/10.1126/science.1184208
  28. Mersch, B., Sela, N., Ast, G., Suhai, S., and Hotz-Wagenblatt, A. (2007). SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements. BMC Genet. 8, 78.
  29. Mola, G., Vela, E., Fernandez-Figueras, M.T., Isamat, M., and Munoz-Marmol, A.M. (2007). Exonization of Alu-generated splice variants in the survivin gene of human and non-human primates. J. Mol. Biol. 366, 1055-1063. https://doi.org/10.1016/j.jmb.2006.11.089
  30. Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413-1415. https://doi.org/10.1038/ng.259
  31. Park, S.J., Kim, Y.H., Lee, S.R., Choe, S.H., Kim, M.J., Kim, S.U., Kim, J.S., Sim, B.W., Song, B.S., Jeong, K.J., et al. (2015a). Gain of a new exon by a lineage-specific Alu element-integration event in the BCS1L gene during primate evolution. Mol. Cells 38, 950-958. https://doi.org/10.14348/molcells.2015.0121
  32. Park, S.J., Kim, Y.H., Nam, G.H., Choe, S.H., Lee, S.R., Kim, S.U., Kim, J.S., Sim, B.W., Song, B.S., Jeong, K.J., et al. (2015b). Quantitative expression analysis of APP pathway and tau phosphorylation-related genes in the ICV STZ-induced non-human primate model of sporadic Alzheimer's disease. Int. J. Mol. Sci. 16, 2386-2402. https://doi.org/10.3390/ijms16022386
  33. Peters, J., Rittger, A., Weisner, R., Knabbe, J., Zunke, F., Rothaug, M., Damme, M., Berkovic, S.F., Blanz, J., Saftig, P., et al. (2015). Lysosomal integral membrane protein type-2 (LIMP-2/SCARB2). is a substrate of cathepsin-F, a cysteine protease mutated in type-B-Kufsdisease. Biochem. Biophys. Res. Commun. 457, 334-340. https://doi.org/10.1016/j.bbrc.2014.12.111
  34. Repnik, U., Stoka, V., Turk, V. and Turk, B. (2012). Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 1824, 22-33. https://doi.org/10.1016/j.bbapap.2011.08.016
  35. Rhesus Macaque Genome, S., Analysis, C., Gibbs, R.A., Rogers, J., Katze, M.G., Bumgarner, R., Weinstock, G.M., Mardis, E.R., Remington, K.A., Strausberg, R.L., et al. (2007). Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222-234. https://doi.org/10.1126/science.1139247
  36. Rossi, A., Deveraux, Q., Turk, B., and Sali, A. (2004). Comprehensive search for cysteine cathepsins in the human genome. Biol. Chem. 385, 363-372.
  37. Schmitz, J., and Brosius, J. (2011). Exonization of transposed elements: A challenge and opportunity for evolution. Biochimie 93, 1928-1934. https://doi.org/10.1016/j.biochi.2011.07.014
  38. Smith, K.R., Dahl, H.H., Canafoglia, L., Andermann, E., Damiano, J., Morbin, M., Bruni, A.C., Giaccone, G., Cossette, P., Saftig, P., et al. (2013). Cathepsin F mutations cause Type B Kufs disease, an adultonset neuronal ceroid lipofuscinosis. Hum. Mol. Genet. 22, 1417-1423. https://doi.org/10.1093/hmg/dds558
  39. Sorek, R., Ast, G. and Graur, D. (2002). Alu-containing exons are alternatively spliced. Genome Res. 12, 1060-1067. https://doi.org/10.1101/gr.229302
  40. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  41. Tang, C.H., Lee, J.W., Galvez, M.G., Robillard, L., Mole, S.E., and Chapman, H.A. (2006). Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol. Cell Biol. 26, 2309-2316. https://doi.org/10.1128/MCB.26.6.2309-2316.2006
  42. Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., and Turk, D. (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68-88. https://doi.org/10.1016/j.bbapap.2011.10.002
  43. Vazquez-Ortiz, G., Pina-Sanchez, P., Vazquez, K., Duenas, A., Taja, L., Mendoza, P., Garcia, J.A., and Salcedo, M. (2005). Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer. BMC Cancer 5, 68. https://doi.org/10.1186/1471-2407-5-68
  44. Zhang, X.H., and Chasin, L.A. (2006). Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. Proc. Natl. Acad. Sci. USA 103, 13427-13432. https://doi.org/10.1073/pnas.0603042103