Survival assays using Caenorhabditis elegans

  • Park, Hae-Eun H. (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Jung, Yoonji (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Seung-Jae V. (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2017.02.06
  • Accepted : 2017.02.23
  • Published : 2017.02.28


Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.


aging;C. elegans;immunity;lifespan;pathogen;stress;survival


Supported by : Ministry of Health and Welfare


  1. Aitlhadj, L., and Sturzenbaum, S.R. (2010). The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364-365.
  2. Alspaugh, J.A. (2015). Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet. Biol. 78, 55-58.
  3. Altintas, O., Park, S., and Lee, S.J. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 49, 81-92.
  4. Amrit, F.R., Ratnappan, R., Keith, S.A., and Ghazi, A. (2014). The C. elegans lifespan assay toolkit. Methods 68, 465-475.
  5. Barsyte, D., Lovejoy, D.A., and Lithgow, G.J. (2001). Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J. 15, 627-634.
  6. Beanan, M.J., and Strome, S. (1992). Characterization of a germ-line proliferation mutation in C. elegans. Development 116, 755-766.
  7. Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cocheme, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., and Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228-239.
  8. Choe, K.P., and Strange, K. (2007). Molecular and genetic characterization of osmosensing and signal transduction in the nematode Caenorhabditis elegans. FEBS J. 274, 5782-5789.
  9. Cleland, W.W. (1964). DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry 3, 480-482.
  10. Corsi, A.K., Wightman, B., and Chalfie, M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Worm-Book, 1-31.
  11. Darby, C. (2005). Interactions with microbial pathogens. WormBook, 1-15.
  12. Doonan, R., McElwee, J.J., Matthijssens, F., Walker, G.A., Houthoofd, K., Back, P., Matscheski, A., Vanfleteren, J.R., and Gems, D. (2008). Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22, 3236-3241.
  13. Ewbank, J.J. (2006). Signaling in the immune response. WormBook, 1-12.
  14. Ewbank, J.J., and Pujol, N. (2016). Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr. Opin. Immunol 38, 1-7.
  15. Felix, M.A., Ashe, A., Piffaretti, J., Wu, G., Nuez, I., Belicard, T., Jiang, Y., Zhao, G., Franz, C.J., Goldstein, L.D., et al. (2011). Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586.
  16. Fisher, R.A. (1990). Statistical methods, experimental design, and scientific inference (Oxford Univ. Press).
  17. Ford, S.A., Kao, D., Williams, D., and King, K.C. (2016). Microbemediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430.
  18. Franz, C.J., Zhao, G., Felix, M.A., and Wang, D. (2012). Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode-infecting virus. J. Virol. 86, 11940.
  19. Freedman, J.H., Slice, L.W., Dixon, D., Fire, A., and Rubin, C.S. (1993). The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J. Biol. Chem. 268, 2554-2564.
  20. Garigan, D., Hsu, A.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112.
  21. Gems, D., and Riddle, D.L. (1996). Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379, 723-725.
  22. Gill, M.S., Olsen, A., Sampayo, J.N., and Lithgow, G.J. (2003). An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 35, 558-565.
  23. Greer, E.L., Maures, T.J., Ucar, D., Hauswirth, A.G., Mancini, E., Lim, J.P., Benayoun, B.A., Shi, Y., and Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365-371.
  24. Hall, J., Haas, K.L., and Freedman, J.H. (2012). Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans. Toxicol. Sci. 128, 418-426.
  25. Han, S.K., Lee, D., Lee, H., Kim, D., Son, H.G., Yang, J.S., Lee, S.V., and Kim, S. (2016). OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7, 56147-56152.
  26. Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., Paupard, M.C., Hall, D.H., and Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814.
  27. Hodgkin, J., and Partridge, F.A. (2008). Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol. 6, 2634-2637.
  28. Hwang, A.B., and Lee, S.J. (2011). Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3, 304-310.
  29. Hwang, A.B., Jeong, D.E., and Lee, S.J. (2012). Mitochondria and organismal longevity. Curr. Genomics 13, 519-532.
  30. Hwang, A.B., Ryu, E.A., Artan, M., Chang, H.W., Kabir, M.H., Nam, H.J., Lee, D., Yang, J.S., Kim, S., Mair, W.B., et al. (2014). Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, E4458-4467.
  31. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7, 60-72.
  32. Jiang, B., Ren, C., Li, Y., Lu, Y., Li, W., Wu, Y., Gao, Y., Ratcliffe, P.J., Liu, H., and Zhang, C. (2011). Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in Caenorhabditis elegans. J. Biol. Inorg. Chem. 16, 267-274.
  33. Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Statistical Association 53, 457-481.
  34. Keith, S.A., Amrit, F.R., Ratnappan, R., and Ghazi, A. (2014). The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476-486.
  35. Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512.
  36. Kim, D.H., and Ausubel, F.M. (2005). Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17, 4-10.
  37. Kim, D.H., and Ewbank, J.J. (2015). Signaling in the innate immune response. WormBook, 1-51.
  38. Kirienko, N.V., Kirienko, D.R., Larkins-Ford, J., Wahlby, C., Ruvkun, G., and Ausubel, F.M. (2013). Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13, 406-416.
  39. Kirienko, N.V., Cezairliyan, B.O., Ausubel, F.M., and Powell, J.R. (2014). Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol. Biol. 1149, 653-669.
  40. Kourtis, N., Nikoletopoulou, V., and Tavernarakis, N. (2012). Small heatshock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213-218.
  41. Kuo, S.C., and Lampen, J.O. (1974). Tunicamycin--an inhibitor of yeast glycoprotein synthesis. Biochem. Biophys. Res. Commun. 58, 287-295.
  42. Labbadia, J., and Morimoto, R.I. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435-464.
  43. Lamitina, T., Huang, C.G., and Strange, K. (2006). Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc. Natl. Acad. Sci. USA 103, 12173-12178.
  44. Lee, S.J., Murphy, C.T., and Kenyon, C. (2009). Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10, 379-391.
  45. Lee, S.J., Hwang, A.B., and Kenyon, C. (2010). Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 20, 2131-2136.
  46. Lee, Y., An, S.W.A., Artan, M., Seo, M., Hwang, A.B., Jeong, D.-E., Son, H.G., Hwang, W., Lee, D., and Seo, K., et al. (2015). Genes and Pathways That Influence Longevity in Caenorhabditis elegans. In Aging Mechanisms (Springer), pp. 123-169.
  47. Lithgow, G.J., White, T.M., Hinerfeld, D.A., and Johnson, T.E. (1994). Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J. Gerontol. 49, B270-276.
  48. Lu, N., and Goetsch, K. (1993). Carbohydrate requirement of Caenorhabditis elegans and the final development of a chemically defined medium. Nematologica 39, 303-311.
  49. Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163-170.
  50. Mathew, M.D., Mathew, N.D., and Ebert, P.R. (2012). WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One 7, e33483.
  51. Murakami, S., and Johnson, T.E. (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207-1218.
  52. Murray, P., Hayward, S.A., Govan, G.G., Gracey, A.Y., and Cossins, A.R. (2007). An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 5489-5494.
  53. Mylonakis, E., Ausubel, F.M., Perfect, J.R., Heitman, J., and Calderwood, S.B. (2002). Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99, 15675-15680.
  54. Mylonakis, E., Casadevall, A., and Ausubel, F.M. (2007). Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3, e101.
  55. O'Neil, N., and Rose, A. (2006). DNA repair. WormBook, 1-12.
  56. Oliveira, R.P., Porter Abate, J., Dilks, K., Landis, J., Ashraf, J., Murphy, C.T., and Blackwell, T.K. (2009). Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8, 524-541.
  57. Papenfort, K., and Bassler, B.L. (2016). Quorum sensing signalresponse systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576-588.
  58. Powell-Coffman, J.A. (2010). Hypoxia signaling and resistance in C. elegans. Trends Endocrinol. Metab. 21, 435-440.
  59. Pulak, R. (2006). Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol. Biol. 351, 275-286.
  60. Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W.S., Kerk, S.Y., Hannon, G.J., and Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287.
  61. Reddy, K.C., Andersen, E.C., Kruglyak, L., and Kim, D.H. (2009). A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382-384.
  62. Rodriguez, M., Snoek, L.B., De Bono, M., and Kammenga, J.E. (2013). Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet. 29, 367-374.
  63. Rohlfing, A.K., Miteva, Y., Hannenhalli, S., and Lamitina, T. (2010). Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans. PloS one 5, e9010.
  64. Rooney, J.P., Luz, A.L., Gonzalez-Hunt, C.P., Bodhicharla, R., Ryde, I.T., Anbalagan, C., and Meyer, J.N. (2014). Effects of 5'-fluoro-2-deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Exp. Gerontol. 56, 69-76.
  65. Samuelson, A.V., Carr, C.E., and Ruvkun, G. (2007). Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 21, 2976-2994.
  66. Savory, F.R., Sait, S.M., and Hope, I.A. (2011). DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLoS One 6, e24550.
  67. Scott, B.A., Avidan, M.S., and Crowder, C.M. (2002). Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296, 2388-2391.
  68. Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., et al. (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893-903.
  69. Sies, H. (1985). Oxidative stress: introductory remarks. Oxidative Stress, 1-8.
  70. Sonoda, S., Ohta, A., Maruo, A., Ujisawa, T., and Kuhara, A. (2016). Sperm affects head sensory neuron in temperature tolerance of Caenorhabditis elegans. Cell Rep. 16, 56-65.
  71. Stiernagle, T. (2006). Maintenance of C. elegans. WormBook, 1-11.
  72. Stroustrup, N., Ulmschneider, B.E., Nash, Z.M., Lopez-Moyado, I.F., Apfeld, J., and Fontana, W. (2013). The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665-670.
  73. Stroustrup, N., Anthony, W.E., Nash, Z.M., Gowda, V., Gomez, A., Lopez-Moyado, I.F., Apfeld, J., and Fontana, W. (2016). The temporal scaling of Caenorhabditis elegans ageing. Nature 530, 103-107.
  74. Sun, A.Y., and Lambie, E.J. (1997). gon-2, a gene required for gonadogenesis in Caenorhabditis elegans. Genetics 147, 1077-1089.
  75. Szewczyk, N.J., Udranszky, I.A., Kozak, E., Sunga, J., Kim, S.K., Jacobson, L.A., and Conley, C.A. (2006). Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J. Exp. Biol. 209, 4129-4139.
  76. Troemel, E.R. (2016). Host-microsporidia interactions in Caenorhabditis elegans, a model nematode host. Microbiol Spectr 4.
  77. Troemel, E.R., Felix, M.A., Whiteman, N.K., Barriere, A., and Ausubel, F.M. (2008). Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol. 6, 2736-2752.
  78. Van Raamsdonk, J.M., and Hekimi, S. (2011). FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech. Ageing Dev. 132, 519-521.
  79. Van Raamsdonk, J.M., and Hekimi, S. (2012). Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA 109, 5785-5790.
  80. Vilchez, D., Saez, I., and Dillin, A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659.
  81. Walter, P., and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086.
  82. Wang, Y., and Hekimi, S. (2015). Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science 350, 1204-1207.
  83. Wang, D., Liu, P., and Xing, X. (2010). Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. Environ Toxicol Pharmacol 29, 213-222.
  84. Xian, B., Shen, J., Chen, W., Sun, N., Qiao, N., Jiang, D., Yu, T., Men, Y., Han, Z., Pang, Y., et al. (2013). WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12, 398-409.
  85. Yang, W., and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556.
  86. Yang, J.S., Nam, H.J., Seo, M., Han, S.K., Choi, Y., Nam, H.G., Lee, S.J., and Kim, S. (2011). OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 6, e23525.
  87. Ziehm, M., Ivanov, D.K., Bhat, A., Partridge, L., and Thornton, J.M. (2015). SurvCurv database and online survival analysis platform update. Bioinformatics 31, 3878-3880.

Cited by

  1. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective vol.9, pp.1663-9812, 2018,