DOI QR코드

DOI QR Code

Thermal and Mechanical Properties of Biodegradable PBAT and MWCNT Composites

생분해성 PBAT와 MWCNT 복합재료의 제조 및 열적, 기계적 특성

  • Cho, Yong-Kwang (Technical Center, Hanil Cement) ;
  • Bae, Seong-Guk (Department of Polymer Engineering, Pukyong National University) ;
  • Noh, Geon Ho (Department of Polymer Engineering, Pukyong National University) ;
  • Park, Chan-Young (Department of Polymer Engineering, Pukyong National University) ;
  • Lee, Won-Ki (Department of Polymer Engineering, Pukyong National University) ;
  • Jang, Seong-Ho (Department of Bioenviromental Energy, Pusan National University)
  • 조용광 (한일시멘트 테크니컬센터) ;
  • 배성국 (부경대학교 고분자공학과) ;
  • 노건호 (부경대학교 고분자공학과) ;
  • 박찬영 (부경대학교 고분자공학과) ;
  • 이원기 (부경대학교 고분자공학과) ;
  • 장성호 (부산대학교 바이오환경에너지학과)
  • Received : 2016.10.28
  • Accepted : 2017.01.03
  • Published : 2017.01.31

Abstract

Multi-Walled Carbon Nanotubes (MWCNTs) were modified with epoxy and aminosilane diethanolamine (DEA), and nanocomposites of poly(butylene adipate-co-terephthalate) (PBAT) and the modified MWCNTs were prepared with the aim of improving the physical properties of biodegradable PBAT. The physical and the thermal properties of the PBAT/MWCNT nanocomposites were investigated using various techniques. Fourier transform infrared spectroscopy measurements revealed that the MWCNTs were efficiently modified with DEA. Scanning electron micrographs of the nanocomposites indicated that the modified MWCNTs were dispersed homogeneously in PBAT. The thermal stability of the nanocomposite decreased with increase in the content of epoxy-MWCNT-DEA due to the poor thermal stabilities of epoxy and amino silane DEA. However, the surface hydrophobicity of the nanocomposite increased. The highest stress (170% of PBAT) was observed when the content of epoxy-MWCNT-DEA in the nanocomposite was 2 wt%.

Keywords

Poly(butylene adipate-co-terephthalate);Epoxy;Multi-walled carbon nanotubes;Nanocomposite

References

  1. Chivrac, F., Pollet, E., Averous, L., 2007, Nonisothermal crystallization behavior of poly(butylene adipate co terephthalate)/clay nano biocomposites, J. Polym. Sci. Part B: Polym. Phys., 45, 1503-1510. https://doi.org/10.1002/polb.21129
  2. Du, J. H., Bai, J., Cheng, H. M., 2007, The present status and key problems of carbon nanotube based polymer composites, Express Polymer Letters, 1, 253-273. https://doi.org/10.3144/expresspolymlett.2007.39
  3. Gojny, F. H., Nastalczyk, J., Roslaniec, Z., Schulte, K., 2003, Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites, Chemical Physics Letters, 370, 820-824. https://doi.org/10.1016/S0009-2614(03)00187-8
  4. Hong, C. H., Bae, J. W., Lee, Y. N., Lee, C. S., Jho, J. Y., Nam, B. U., 2006, Preparation of polypropylene/clay nanocomposites using aminosilane treated clay, Polymer(Korea), 30, 318-325.
  5. Jang, J. H., Yi, J. W., Lee, W. O., Lee, H. G., Um, M. K., Kim, J. B., Byun, J. H., 2010, Dispersion and property evaluation of nanocomposites by aspect ratio of MWCNT, Composites Research, 23, 58-63.
  6. Ko, J. H., Kim, J. C., Chang, J. H., 2009, Characteri -zations of polypropylene/functionalized multiwalled carbon nanotube films, Polymer, 33, 333-341.
  7. Lee, J. E., Kim, H. J., 2005, Synthesis and properties of polyurethane/clay nanocomposites containing siloxane segment, Polymer, 29, 177-182.
  8. Lee, Y. K., Kim, J. Y., Lee, M. Y., Nam, J. D., Park, Y. H., Park, C. S., 2002, Dynamic and mechanical properties of PPS/ABS blends, Polymer(Korea), 26, 139-144.
  9. Li, Q. H., Zhou, Q. H., Deng, D., Yu, Q. Z., Gu, L., Gong, K. D., Xu, K. H., 2013, Enhanced thermal and electrical properties of poly(D, L-lactide)/multi-walled carbon nanotubes composites by in-situ polymerization, Transactions of Nonferrous Metals Society of China, 23, 1421-1427. https://doi.org/10.1016/S1003-6326(13)62612-6
  10. Na, H. Y., Yeom, Y. H., Yoon, B. C., Lee, S. J., 2014, Cure behavior and chemorheology of low temperature cure epoxy matrix resin, Polymer(Korea), 38, 171-179.
  11. Park, S. M., Kim, D. S., 2012, Mechanical properties of aminosilane-treated wood flour/PVC/nanoclay composites, Polymer(Korea), 36, 573-578.
  12. Park, S. J., Jin, J. S., Lee, J. R., Kim, Y. K., 2000, Effect of silane coupling agent treatment on interfacial adhesion of glass fiber-reinforced composites, J. Korean Ind. Eng. Chem., 11, 285-289.
  13. Wang, Z. J., Joel, G. K., Park, J. M., Lee, W. I., Park, J. G., 2009, Interfacial properties of gradient specimen of CNT-epoxy nanocomposites using micromechanical technique and wettability, Comp. Res., 22, 8-14.
  14. Weng, Y. X., Jin, Y. U., Meng, Q. Y., Wang, L., Zhang, M., Wang, Y. Z., 2013, Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and their blend under soil conditions, Polymer Testing, 32, 918-926. https://doi.org/10.1016/j.polymertesting.2013.05.001
  15. Zhou, T., 2013, Preparation and characterization of various biopolymer based food packaging materials, Ph. D. Dissertation, Mokpo National University, Korea.
  16. Zhou, W., Wang, B., Zheng, Y., Zhu, Y., Wang, J., Qi, N., 2008, Effect of surface decoration of CNTs on the interfacial interaction and microstructure of epoxy/MWNT nanocomposites, Chem. Phys. Chem., 9, 1046-1052. https://doi.org/10.1002/cphc.200700850
  17. http://blog.skenergy.com