Low-Temperature Combustion of Ethanol over Supported Platinum Catalysts

백금 담지 촉매상에서 에탄올의 저온연소

  • Kim, Moon Hyeon (Department of Environmental Engineering, Daegu University)
  • 김문현 (대구대학교 공과대학 환경공학과)
  • Received : 2016.10.27
  • Accepted : 2016.12.06
  • Published : 2017.01.31


Combustion of ethanol (EtOH) at low temperatures has been studied using titania- and silica-supported platinum nanocrystallites with different sizes in a wide range of 1~25 nm, to see if EtOH can be used as a clean, alternative fuel, i.e., one that does not emit sulfur oxides, fine particulates and nitrogen oxides, and if the combustion flue gas can be used for directly heating the interior of greenhouses. The results of $H_2-N_2O$ titration on the supported Pt catalysts with no calcination indicate a metal dispersion of $0.97{\pm}0.1$, corresponding to ca. 1.2 nm, while the calcination of 0.65% $Pt/SiO_2$ at 600 and $900^{\circ}C$ gives the respective sizes of 13.7 and 24.6 nm when using X-ray diffraction technique, as expected. A comparison of EtOH combustion using $Pt/TiO_2$ and $Pt/SiO_2$ catalysts with the same metal content, dispersion and nanoparticle size discloses that the former is better at all temperatures up to $200^{\circ}C$, suggesting that some acid sites can play a role for the combustion. There is a noticeable difference in the combustion characteristics of EtOH at $80{\sim}200^{\circ}C$ between samples of 0.65% $Pt/SiO_2$ consisting of different metal particle sizes; the catalyst with larger platinum nanoparticles shows higher intrinsic activity. Besides the formation of $CO_2$, low-temperature combustion of EtOH can lead to many other pathways that generate undesired byproducts, such as formaldehyde, acetaldehyde, acetic acid, diethyl ether, and ethylene, depending strongly on the catalyst and reaction conditions. A 0.65% $Pt/SiO_2$ catalyst with a Pt crystallite size of 24.6 nm shows stable performances in EtOH combustion at $120^{\circ}C$ even for 12 h, regardless of the space velocity allowed.


Catalytic combustion;Ethanol (EtOH);Supported platinum catalysts;Particle size effect;Side reactions;Aldehydes


  1. Avgouropoulos, G., Oikonomopoulos, E., Kanistras, D., Ioannides, T., 2006, Complete oxidation of ethanol over alkali-promoted $Pt/Al_2O_3$ catalysts, Appl. Catal. B, 65(1-2), 62-69.
  2. Behrens, D. A., Lee, I. C., Waits, C. M., 2010, Catalytic combustion of alcohols for microburner applications, J. Power Sources, 195(7), 2008-2013.
  3. Benson, J. E., Boudart, M., 1965, Hydrogen-oxygen titration method for the measurement of supported platinum surface area, J. Catal., 4(6), 704-710.
  4. Benvenutti, E. V., Franken, L., Moro, C. C., Davanzo, C. U., 1999, FTIR study of hydrogen and carbon monoxide adsorption on $Pt/TiO_2$, $Pt/ZrO_2$, and $Pt/Al_2O_3$, Langmuir, 15(23), 8140-8146.
  5. Cape, J. N., 2003, Effects of airborne volatile organic compounds on plants, Environ. Pollut., 122(1), 145-157.
  6. Davis, J. L., Barteau, M. A., 1989, Polymerization and decarbonylation reactions of aldehydes on the Pd (111) surface, J. Am. Chem. Soc., 111(5), 1782-1792.
  7. Davis, J. L., Barteau, M. A., 1990, Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111), Surf. Sci., 235(2-3), 235-248.
  8. Deng, C., Yang, W., Zhou, J., Liu, Z., Wang, Y., Cen, K., 2015, Catalytic combustion of methane, methanol, and ethanol in microscale combustors with Pt/ZSM-5 packed beds, Fuel, 150, 339-346.
  9. Denton, P., Giroir-Fendler, A., Praliaud, H., Primet, M., 2000, Role of the nature of the support (alumina or silica), of the support porosity, and of the Pt dispersion in the selective reduction of NO by $C_3H_6$ under lean-burn conditions, J. Catal., 189(2), 410-420.
  10. Goldemberg, J., 2007, Ethanol for a sustainable energy future, Science, 315(5813), 808-810.
  11. Hensen, E. J. M., Poduval, D. G., Degirmenci, V., Ligthart, D. A. J. M., Chen, W., Mauge, F., Rigutto, M. S., van Veen, J. A. R., 2012, Acidity characterization of amorphous silica-alumina, J. Phys. Chem. C, 116(40), 21416-21429.
  12. Herrmann, F., Jochim, B., OBwald, P., Cai, L., Pitsch, H., Kohse-Hoinghaus, K., 2014, Experimental and numerical low-temperature oxidation study of ethanol and dimethyl ether, Combust. Flame, 161(2), 384-397.
  13. Idriss, H., Seebauer, E. G., 2000, Reactions of ethanol over metal oxides, J. Mol. Catal. A, 152(1-2), 201-212.
  14. Kim, K. S., Barteau, M. A., 1990, Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on $TiO_2$ (001) single-crystal surfaces, J. Catal., 125(2), 353-375.
  15. Kim, M. H., Choo, K. H., 2007, Low-temperature continuous wet oxidation of trichloroethylene over $CoOx/TiO_2$ catalysts, Catal. Commun., 8(3), 462-466.
  16. Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2001, Dissociative $N_2O$ adsorption on supported Pt, J. Catal., 204(2), 348-357.
  17. Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2002, Determination of metal dispersion and surface composition in supported Cu-Pt catalysts, J. Catal., 208(2), 381-392.
  18. Kim, M. H., Kim, D. H., 2013, Low-temperature reduction of $N_2O$ by $H_2$ over $Pt/SiO_2$ catalysts, J. Environ. Sci. Int., 22(1), 73-81.
  19. Kim, Y. J., Park, K. H., Kang, C. Y., Kim, Y. H., Jeong, E. M., Lee, W. Y., Park, H. T., Park, M. J., 2010, Prospect of demand and supply of energy in the agricultural sector and strategies for introducing clean energy farming system, Report No. R614, Korea Rural Economics Institute, Naju.
  20. Krishna, K. R., Bell, A. T., 1997, An Isotopic tracer study of the deactivation of $Ru/TiO_2$ catalysts during Fischer-Tropsch synthesis, J. Catal., 130(2), 597-610.
  21. Lahousse, C., Bernier, A., Grange, P., Delmon, B., Papaefthimiou, P., Ioannides, T., Verykios, X., 1998, Evaluation of ${\gamma}-MnO_2$ as a VOC removal catalyst: Comparison with a noble metal catalyst, J. Catal., 178(1), 214-225.
  22. Liotta, L. F., 2010, Catalytic oxidation of volatile organic compounds on supported noble metals, Appl. Catal. B, 100(3-4), 403-412.
  23. Marczewski, M., Jakubiak, A., Marczewska, H., Frydrych, A., Gontarz, M., Sniegula, A., 2004, Acidity of sulfated oxides: $Al_2O_3$, $TiO_2$ and $SiO_2$. Application of test reactions, Phys. Chem. Chem. Phys., 6(9), 2513-2522.
  24. Mitsui, T., Tsutsui, K., Matsui, T., Kikuchi, R., Eguchi, K., 2008, Catalytic abatement of acetaldehyde over oxide-supported precious metal catalysts, Appl. Catal. B, 78(1-2), 158-165.
  25. Morales, M. R., Barbero, B. P., Cadus, L. E., 2006, Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts, Appl. Catal. B, 67(3-4), 229-236.
  26. Morales, M. R., Barbero, B. P., Lopez, T., Moreno, A., Cadus, L. E., 2009, Evaluation and characterization of Mn-Cu mixed oxide catalysts supported on $TiO_2$ and $ZrO_2$ for ethanol total oxidation, Fuel, 88(11), 2122-2129.
  27. O'Malley, A., Hodnett, B. K., 1999, The influence of volatile organic compound structure on conditions required for total oxidation, Catal. Today, 54(1), 31-38.
  28. Peluso, M. A., Pronsato, E., Sambeth, J. E., Thomas, H. J., Busca, G., 2008, Catalytic combustion of ethanol on pure and alumina supported K-Mn oxides: An IR and flow reactor study, Appl. Catal. B, 78(1-2), 73-79.
  29. Perez, A., Montes, M., Molina, R., Moreno, S., 2011, Cooperative effect of Ce and Pr in the catalytic combustion of ethanol in mixed Cu/CoMgAl oxides obtained from hydrotalcites, Appl. Catal. A, 408(1-2), 96-104.
  30. Radic, N., Grbic, B., Terlecki-Baricevic, A., 2004, Kinetics of deep oxidation of n-hexane and toluene over $Pt/Al_2O_3$ catalysts: Platinum crystallite size effect, Appl. Catal. B, 50(3), 153-159.
  31. Roy, S., Hegde, M. S., Madras, G., 2009, Catalysis for $NO_x$ abatement, Appl. Energy, 86(11), 2283-2297.
  32. Rychter, A., Janes, H. W., Chin, C. K., Frenkel, C., 1979, Effect of ethanol, acetaldehyde, acetic acid, and ethylene on changes in respiration and respiratory metabolites in potato tubers, Plant Physiol., 64(1), 108-111.
  33. Santos, V. P., Carabineiro, S. A. C., Tavares, P. B., Pereira, M. F. R., Orfao, J. J. M., Figueiredo, J. L., 2010, Oxidation of CO, ethanol and toluene over $TiO_2$ supported noble metal catalysts, Appl. Catal. B, 99(1-2), 198-205.
  34. Sims, R. E. H., Mabee, W., Saddler, J. N., Taylor, M., 2010, An Overview of second generation biofuel technologies, Bioresour. Technol., 101(6), 1570-1580.
  35. Takeguchi, T., Okanishi, T., Aoyama, S., Ueda, J., Kikuchi, R., Eguchi, K., 2003, Strong chemical interaction between PdO and $SnO_2$ and the influence on catalytic combustion of methane, Appl. Catal. A, 252(1), 205-214.
  36. Tauster, S. J., Fung, S. C., Baker, T. K., Horsley, J. A., 1981, Strong interactions in supported-metal catalysts, Science, 211(4487), 1121-1125.
  37. Trawczynski, J., Bielak, B., Mista, W., 2005, Oxidation of ethanol over supported manganese catalysts-effect of the carrier, Appl. Catal. B, 55(4), 277-285.
  38. Umeda, M., Nagai, K., Shibamine, M., Inoue, M., 2010, Methanol oxidation enhanced by the presence of $O_2$ at novel Pt-C co-sputtered electrode, Phys. Chem. Chem. Phys., 12(26), 7041-7049.
  39. Vannice, M. A., Hasselbring, L. C., Sen, B., 1985, Direct measurements of heats of adsorption on platinum catalysts: I. $H_2$ on Pt dispersed on $SiO_2$, $Al_2O_3$, $SiO_2-Al_2O_3$, and $TiO_2$, J. Catal., 95(1), 57-70.
  40. Wilson, G. R., Hall, W. K., 1970, Studies of the hydrogen held by solids: XVIII. Hydrogen and oxygen chemisorption on alumina- and zeolite-supported platinum, J. Catal., 17(2), 190-206.
  41. Yang, W. H., Kim, M. H., 2006, Catalytic reduction of $N_2O$ by $H_2$ over well-characterized Pt surfaces, Korean J. Chem. Eng., 23(6), 908-918.
  42. Yee, A., Morrison, S. J., Idriss, H., 2000, A Study of ethanol reactions over $Pt/CeO_2$ by temperature-programmed desorption and in situ FT-IR spectroscopy: Evidence of benzene formation, J. Catal., 191(1), 30-45.