DOI QR코드

DOI QR Code

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Graphene Oxide Nanocomposite Films: Thermomechanical Properties, Oxygen Transmission Rates, and Hydrolytic Degradation

  • You, Eun Jung (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Gue-Hyun (Division of Energy and Bio Engineering, Dongseo University) ;
  • Lee, Won-Ki (Department of Polymer Engineering, Pukyong National University)
  • Received : 2016.10.17
  • Accepted : 2016.11.29
  • Published : 2017.01.31

Abstract

In this study, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/graphene oxide (GO) nanocomposite films containing various content of GO were prepared using solution casting method. The effect of GO content on Young's modulus and dispersion of GO in PHBV matrix was investigated. Also, the thermomechanical properties, oxygen transmission rates and hydrolytic degradation of PHBV/GO nanocomposite films were studied. The addition of GO into PHBV improves the Young's modulus and decreases thermal expansion coefficient. The improvement can be mainly attributed to good dispersion of GO and interfacial interactions between PHBV and GO. Furthermore, PHBV/GO nanocomposite films show good oxygen barrier properties. PHBV/GO nanocomposites show lower hydrolytic degradation rates with increasing content of GO.

Keywords

Graphene oxide;Poly(3-hydroxybutyrate-co-3-hydroxyvalerate);Hydrolytic degradation;Modulus;Barrier property

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Alexandre, M., Dubois, P., 2000, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials, Mater. Sci. Eng., 28, 1-63. https://doi.org/10.1016/S0927-796X(00)00012-7
  2. Ambrosio-Martín, J., Gorrasi, G., Lopez-Rubio, A., Fabra, M. J., Mas, M. C., Lopez-Manchado, M. A., Lagaron, J. M., 2015, On the use of ball milling to develop PHBV graphene nanocomposites (I) - Morphology, thermal properties, and thermal stability, J. Appl. Polym. Sci.,132, 42101.
  3. Ambrosio-Martín, J., Gorrasi, G., Lopez-Rubio, A., Fabra, M. J., Mas, M. C., Lopez-Manchado, M. A., Lagaron, J. M., 2015, On the use of ball milling to develop poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-graphene nanocomposites (II) - Mechanical, barrier, and electrical properties, J. Appl. Polym. Sci., 132, 42217.
  4. Ataeefard, M., Moradian, S., 2011, Polypropylene/organoclay nanocomposites: Effects of clay content on properties, Polym-Plast. Technol. Eng., 50, 732-739. https://doi.org/10.1080/03602559.2010.551438
  5. Avella, M., Errico, M. E., 2000, Preparation of PHBV/starch blends by reactive blending and their characterization, J. Appl. Polym. Sci., 77, 232-236. https://doi.org/10.1002/(SICI)1097-4628(20000705)77:1<232::AID-APP30>3.0.CO;2-Z
  6. Casarin, S. A., Malmonge, S. M., Kobayashi, M., Agnelli, J. A. M., 2011, Study on in vitro degradation of bioabsorbable polymers: Poly(hydroxybutyrate-co-valerate) (PHBV) and poly(caprolactone) (PCL), J. Biomater. Nanobiotechnol., 2, 207-215. https://doi.org/10.4236/jbnb.2011.23026
  7. Cava, D., Gimenez, E., Gavara, R., Lagaron, J. M., 2006, Comparative performance and barrier properties of biodegradable thermoplastics and nanobiocomposites versus PET for food packaging applications, J. Plast. Film Sheet, 22, 265-274. https://doi.org/10.1177/8756087906071354
  8. Cho, H. J., Park, S., Ha, C. S., 2015, Preparation and chacterization of polynorbornene/sepiolite hybrid nanocomposite films, Polym. Int'l., 64, 96-104. https://doi.org/10.1002/pi.4759
  9. Chun, Y. S., Kim, W. N., 2000, Thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate) and poly ($\epsilon$-caprolactone) blends, Polymer, 41, 2305-2308. https://doi.org/10.1016/S0032-3861(99)00534-0
  10. Giannelis, E. P., 1996, Polymer layered silicate nanocomposites, Adv. Mater., 8, 29-35. https://doi.org/10.1002/adma.19960080104
  11. Gilje, S., Han, S., Wang, M., Wang, K. L., Kaner, R. B., 2007, A Chemical route to graphene for device applications, Nano Lett., 7, 3394-3398. https://doi.org/10.1021/nl0717715
  12. Godbole, S., Gote, S., Latkar, M. L., Chakrabarti, T., 2003, Preparation and characterization of biodegradable poly-3-hydroxybutyrate starch blend films, Bioresource Technol., 86, 33-37. https://doi.org/10.1016/S0960-8524(02)00110-4
  13. Gomez-Navarro, C., Burghard, M., Kern, K., 2008, Elastic properties of chemically derived single graphene sheets, Nano Lett., 8, 2045-2049. https://doi.org/10.1021/nl801384y
  14. Halpin, J. C., Kardos, J. L., 1976, The Halpin-Tsai equations: A Review, Polym. Eng. Sci., 16, 344-352. https://doi.org/10.1002/pen.760160512
  15. Hummers, W. S., Offeman, R. E., 1958, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339. https://doi.org/10.1021/ja01539a017
  16. Imam, S. H., Chen, L., Gordon, S. H., Shogren, R. L., Weisleder, D., Greene, R. V., 1998, Biodegradation of injection molded starch-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends in a natural compost environment, J. Environ. Polym. Degr., 6, 91-98. https://doi.org/10.1023/A:1022806222158
  17. Kim, G. Y., Choi, M. C., Lee, D., Ha, C. S., 2012, 2D-aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid, Macromol. Mater. Eng., 297, 303-311. https://doi.org/10.1002/mame.201100211
  18. King, P. P., 1982, An Industrial view, J. Chem. Technol. Biotechnol., 32, 2-8.
  19. LeBaron, P. C., Wang, Z., Pinnavaia, T. J., 1999, Polymer-layered silicate nanocomposites: An Overview, 1999, Appl. Clay Sci., 15, 11-29. https://doi.org/10.1016/S0169-1317(99)00017-4
  20. Lee, D., Choi, M. C., Ha, C. S., 2012, Polynorbornene dicarboximide/amine functionalized graphene hybrids for potential oxygen barrier films, J. Polym. Sci. Part A: Polym. Chem., 50, 1611-1621. https://doi.org/10.1002/pola.25932
  21. Maniar, K. K., 2004, Polymeric nanocomposites: A Review, Polym-Plast. Technol. Eng., 43, 427-443. https://doi.org/10.1081/PPT-120029972
  22. Parulekar, Y., Mohanty, A. K., 2007, Extruded biodegradable cast films from polyhydroxyalkanoate and thermoplastic starch blends: Fabrication and characterization, Macromol. Mater. Eng., 292, 1218-1228. https://doi.org/10.1002/mame.200700125
  23. Qiu, Z., Ikehara, T., Nishi, T., 2003, Miscibility and crystallization behaviour of biodegradable blends of two aliphatic polyesters, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) blends, Polymer, 44, 7519-7527. https://doi.org/10.1016/j.polymer.2003.09.029
  24. Ray, S. S., Okamoto, M., 2003, Polymer/layered silicate nanocomposites: A Review from preparation to processing, Prog. Polym. Sci., 28, 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  25. Rouf, M. A., Stoke, J. L., 1962, Isolation and identification of the sudanophilic granules of Sphaerotilus natans, J. Bacteriol., 83, 343-347.
  26. Schaefer, D. W., Justice, R. S., 2007, How nano are nanocomposites?, Macromolecules, 40, 8501-8517. https://doi.org/10.1021/ma070356w
  27. Shafiee, M., Ramazani, S. A. A., Danaei, M., 2010, Investigation of the gas barrier properties of PP/clay nanocomposite films with EVA as a compatibiliser prepared by the melt intercalation method, Polym-Plast. Technol. Eng., 49, 991-995. https://doi.org/10.1080/03602559.2010.482075
  28. Shogren, R., 1997, Water vapor permeability of biodegradable polymers, J. Environ. Polym. Degr., 5, 91-95. https://doi.org/10.1007/BF02763592
  29. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., Ruoff, R. S., 2006, Graphene-based composite materials, Nature, 442, 282-286. https://doi.org/10.1038/nature04969
  30. Tapaswi, P. K., Choi, M. C., Jeong, K. M., Ando, S., Ha, C. S., 2015, Transparent aromatic polyimides derived from thiophenyl-substituted benzidines with high refractive index and small birefringence, Macromolecules, 48, 3462-3474. https://doi.org/10.1021/acs.macromol.5b00432
  31. Tzeng, P., Stevens, B., Devlaming, I., Grunlan, J. C., 2015, Polymer-graphene oxide quadlayer thin-film assemblies with improved gas barrier, Langmuir, 51, 5919-5927.
  32. Wang, S., Song, C., Chen, G., Guo, T., Liu, J., Zhang, B., Takeuchi, S., 2005, Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite, Polym. Degr. Stab., 87, 69-76. https://doi.org/10.1016/j.polymdegradstab.2004.07.008
  33. Wang, B., Zhang, Y., Zhang, J., Gou, Q., Wang, Z., Chen, P., Gu, Q., 2013, Crystallization behavior, thermal and mechanical properties of PHBV/graphene nanosheet composites, Chinese J. Polym. Sci., 31, 670-678. https://doi.org/10.1007/s10118-013-1248-1
  34. You, E. J., Lee, D. B., Ha, C. S., 2015, Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphene nanocomposites, J. Adhes. Interf., 16, 108-115. https://doi.org/10.17702/jai.2015.16.3.108
  35. Sridhar, V., Lee, I., Chun, H. H., Park, H. H., 2014, c, Express Polym. Lett., 7, 320-328.