Evaluation of the medical staff effective dose during boron neutron capture therapy using two high resolution voxel-based whole body phantoms

  • Received : 2016.11.10
  • Accepted : 2017.06.06
  • Published : 2017.10.25


Because accelerator-based boron neutron capture therapy (BNCT) systems are planned for use in hospitals, entry into the medical room should be controlled as hospitals are generally assumed to be public and safe places. In this paper, computational investigation of the medical staff effective dose during BNCT has been performed in different situations using Monte Carlo N-Particle (MCNP4C) code and two voxel based male phantoms. The results show that the medical staff effective dose is highly dependent on the position of the medical staff. The results also show that the maximum medical staff effective dose in an emergency situation in the presence of a patient is ${\sim}25.5{\mu}Sv/s$.


  1. R.F. Barth, M.G.H. Vicente, O.K. Harling, W.S. Kiger III, J.K. Riley, P.J. Binns, F.M.Wagner, M. Suzuki, T. Aihara, I. Kato, S. Kawabata, Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer, Radiat. Oncol. 7 (146) (2012) 1-21.
  2. IAEA-TECDOC-1223, Current Status of Neutron Capture Therapy, 2001.
  3. I. Auterinen, S. Salmenhaara, FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production, in: Proceedings of an International Conference on Research Reactor Utilization, Safety, Decommissioning, Fuel, and Waste Management 35(7), 2003, p. 102.
  4. M.-C. Hsiao, Y.-H. Liu, S.-H. Jiang, Computational study of room scattering influence in the THOR BNCT treatment room, Appl. Radiat. Isot. 88 (2014) 162-166.
  5. T. Nakamura, H. Horiguchi, T. Kishi, J. Motohashi, F. Sasajima, H. Kumada, Resumption of JRR-4 and characteristics of neutron beam for BNCT, Appl. Radiat. Isot. 69 (12) (2011) 1932-1935.
  6. A.J. Kreiner, M. Baldo, J.R. Bergueiro, D. Cartelli, W. Castell, V.T. Vento, J.G. Asoia, D. Mercuri, J. Padulo, J.S. Sandin, J. Erhardt, Accelerator-based BNCT, Appl. Radiat. Isot. 88 (2014) 185-189.
  7. A.J. Kreiner, J. Bergueiro, D. Carelli, M. Baldo, W. Castell, J.G. Asoia, J. Padulo, J.C.S. Sandín, J. Igarzabal, J. Erhardt, D. Mercuri, A.A. Valda, D.M. Minsky, M.E. Debray, H.R. Somacal, M.E. Capoulat, M.S. Herrera, M.F. del Grosso, L. Gagetti, M.S. Anzorena, N. Canega, N. Real, M. Gun, H. Tacca, Present status of accelerator-based BNCT, Rep. Pract. Oncol. Radiother. 21 (2016) 95-101.
  8. H. Kumada, A. Matsumura, H. Sakurai, T. Sakae, M. Yoshioka, H. Kobayashi, H. Matsumoto, Y. Kiyanagi, T. Shibata, H. Nakashima, Project for the development of the linac based NCT facility in University of Tsukuba, Appl. Radiat. Isot. 88 (2014) 211-215.
  9. D. Shah, R. Sachs, D. Wilson, Radiation-induced cancer: a modern view, Br. J. Radiol. 85 (1020) (2014) 1166-1173.
  10. J.N. Wang, C.K. Huang, W.C. Tsai, Y.H. Liu, S.H. Jiang, Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR, Appl. Radiat. Isot. 69 (12) (2011) 1850-1853.
  11. J.-N. Wang, K.-W. Lee, S.-H. Jiang, Effective dose evaluation for BNCT brain tumor treatment based on voxel phantoms, Appl. Radiat. Isot. 88 (2014) 55-58.
  12. H. Jarahi, Y. Kasesaz, S.M. Saleh-Koutahi, Evaluation of the effective dose during BNCT at TRR thermal column epithermal facility, Appl. Radiat. Isot. 110 (2016) 134-137.
  13. J.F. Briesmeister, MCNPTM-A General Monte Carlo N-particle Transport Code. Version 4C, LA-13709-M, Los Alamos National Laboratory, 2000.
  14. ICRP, Adult reference computational phantom 110, Ann. ICRP 39 (2) (2009).
  15. ICRP, The 2007 Recommendations of the International Commission on Radiological protection. 37. ICRP Publication 103, Ann. ICRP (2007) 2-4.