Implications of using a 50-μm-thick skin target layer in skin dose coefficient calculation for photons, protons, and helium ions

  • Yeom, Yeon Soo (Department of Nuclear Engineering, Hanyang University) ;
  • Nguyen, Thang Tat (Department of Nuclear Engineering, Hanyang University) ;
  • Choi, Chansoo (Department of Nuclear Engineering, Hanyang University) ;
  • Han, Min Cheol (Department of Nuclear Engineering, Hanyang University) ;
  • Lee, Hanjin (Department of Nuclear Engineering, Hanyang University) ;
  • Han, Haegin (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
  • Received : 2016.12.04
  • Accepted : 2017.06.04
  • Published : 2017.10.25


In a previous study, a set of polygon-mesh (PM)-based skin models including a $50-{\mu}m-thick$ radiosensitive target layer were constructed and used to calculate skin dose coefficients (DCs) for idealized external beams of electrons. The results showed that the calculated skin DCs were significantly different from the International Commission on Radiological Protection (ICRP) Publication 116 skin DCs calculated using voxel-type ICRP reference phantoms that do not include the thin target layer. The difference was as large as 7,700 times for electron energies less than 1 MeV, which raises a significant issue that should be addressed subsequently. In the present study, therefore, as an extension of the initial, previous study, skin DCs for three other particles (photons, protons, and helium ions) were calculated by using the PM-based skin models and the calculated values were compared with the ICRP-116 skin DCs. The analysis of our results showed that for the photon exposures, the calculated values were generally in good agreement with the ICRP-116 values. For the charged particles, by contrast, there was a significant difference between the PM-model-calculated skin DCs and the ICRP-116 values. Specifically, the ICRP-116 skin DCs were smaller than those calculated by the PM models-which is to say that they were under-estimated-by up to ~16 times for both protons and helium ions. These differences in skin dose also significantly affected the calculation of the effective dose (E) values, which is reasonable, considering that the skin dose is the major factor determining effective dose calculation for charged particles. The results of the current study generally show that the ICRP-116 DCs for skin dose and effective dose are not reliable for charged particles.


Grant : Development of particle beam range verification technology based on prompt gamma-ray measurements

Supported by : Hanyang University, Korea Foundation of Nuclear Safety (KoFONS), National Research Foundation of Korea (NRF)


  1. X.G. Xu, An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history, Phys. Med. Biol. 59 (2014) R233-R302.
  2. International Commission on Radiological Protection (ICRP), Adult Reference Computational Phantoms, vol. 39, ICRP Publication 110, Ann. ICRP, 2009, 165 pages.
  3. A. Pujol, S.J. Gibbs, A Monte Carlo method for patient dosimetry from dental X-ray, Dentomaxillofac. Radiol 11 (1982) 25-33.
  4. M. Zankl, R. Velt, G. Williams, K. Schneider, H. Fendel, N. Petoussi-Henss, G. Drexler, The construction of computer tomographic phantoms and their application in radiology and radiation protection, Radiat. Environ. Biophys 27 (1988) 153-164.
  5. X.G. Xu, T.C. Chao, A. Bozkurt, VIP-Man: an image-based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations, Health Phys. 78 (2000) 476-486.
  6. N. Petoussi-Henss, M. Zankl, U. Fill, D. Regulla, The GSF family of voxel phantoms, Phys. Med. Biol. 47 (2002) 89-106.
  7. C. Lee, D. Lodwick, D. Hasenauer, J.L. Williams, C. Lee, W.E. Bolch, Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models, Phys. Med. Biol. 52 (2007) 3309-3333.
  8. J.H. Jeong, S. Cho, K.W. Cho, C.H. Kim, Deformation of the reference Korean voxel male model and its effect on dose calculation, J. Radiat. Prot. Res. 33 (2008) 167-172.
  9. C.H. Kim, S.H. Choi, J.H. Jeong, C. Lee, M.S. Chung, HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver, Phys. Med. Biol. 53 (2008) 4093-4106.
  10. J. Zhang, Y.H. Na, P.F. Caracappa, X.G. Xu, RPI-AM RPI-AF a pair of mesh-based, size-adjustable adult male and female computational phantoms using ICRP-89 parameters and their calculations for organ doses from monoenergetic photon beams, Phys. Med. Biol. 54 (2009) 5885-5908.
  11. V.F. Cassola, V.J. de Melo Lima, R. Kramer, H.J. Khoury, FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy, Phys. Med. Biol. 55.1 (2009) 133-162.
  12. C. Lee, D. Lodwick, J. Hurtado, D. Pafundi, J.L. Williams, W.E. Bolch, The UF family of reference hybrid phantoms for computational radiation dosimetry, Phys. Med. Biol. 55 (2010) 339-363.
  13. D. Broggio, J. Beurrier, M. Bremaud, A. Desbree, J. Farah, C. Huet, D. Franck, Construction of an extended library of adult male 3D models: rationale and results, Phys. Med. Biol. 56 (23) (2011) 7659-7692.
  14. M.R. Maynard, J.W. Geyer, J.P. Aris, R.Y. Shifrin, W.E. Bolch, The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry, Phys. Med. Biol. 56 (2011) 4839-4879.
  15. S. Park, Y.S. Yeom, J.H. Kim, H.S. Lee, M.C. Han, J.H. Jeong, C.H. Kim, Development of reference Korean organ and effective dose calculation online system, J. Radiat. Prot. Res. 39 (2014) 30-37.
  16. Y.S. Yeom, J.H. Jeong, C.H. Kim, B.K. Ham, K.W. Cho, S.B. Hwang, HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver, Phys. Med. Biol. 59 (14) (2014) 3969-3984.
  17. Y.S. Yeom, M.C. Han, C.H. Kim, J.H. Jeong, Conversion of ICRP male reference phantom to polygon-surface phantom, Phys. Med. Biol. 58 (2013) 6985-7007.
  18. International Commission on Radiological Protection (ICRP), Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures, vol. 40, ICRP Publication 116, Ann. ICRP, 2010, 257 pages.
  19. International Commission on Radiological Protection (ICRP), Recommendations of the ICRP, vol. 1, ICRP Publication 26, Ann. ICRP, 1977, 53 pages.
  20. International Commission on Radiological Protection (ICRP), Occupational Intakes of Radionuclides: Part 1, vol. 44, ICRP Publication 130, Ann. ICRP, 2015, 188 pages.
  21. Y.S. Yeom, C.H. Kim, T.T. Nguyen, C. Choi, M.C. Han, J.H. Jeong, Construction of new skin models and calculation of skin dose coefficients for electron exposures, J. Korean Phys. Soc. 69 (2016) 512-517.
  22. S. Agostinelli, J. Allisonas, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. A 506 (3) (2003) 250-303.
  23. International Commission on Radiological Protection (ICRP), Basic Anatomical and Physiological Data for Use in Radiological Protection Reference Values, vol. 32, ICRP Publication 89, Ann. ICRP, 2002, 265 pages.
  24. G. White, I.J. Wilson, Photon, electron, proton and neutron interaction data for body tissues, ICRU Report 46 (1992).
  25. H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. 41 (2) (2015), 36 pages.
  26. Y.S. Yeom, J.H. Jeong, M.C. Han, C.H. Kim, Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations, Phys. Med. Biol. 59.12 (2014) 3173-3185.
  27. D.H. Wright [Internet]. Geant4 Physics Reference Manual, 2016 (9 December), Available from:
  28. International Commission on Radiological Protection (ICRP), The 2007 Recommendations of the International Commission on Radiological Protection, vol. 37, ICRP Publication 103, Ann. ICRP, 2007, 332 pages.