DOI QR코드

DOI QR Code

Beta particle energy spectra shift due to self-attenuation effects in environmental sources

  • Received : 2016.09.06
  • Accepted : 2017.05.05
  • Published : 2017.10.25

Abstract

In order to predict and control the environmental and health impacts of ionizing radiation in environmental sources such as groundwater, it is necessary to identify the radionuclides present. Beta-emitting radionuclides are frequently identified by measuring their characteristic energy spectra. The present work shows that self-attenuation effects from volume sources result in a geometry-dependent shift in the characteristic spectra, which needs to be taken into account in order to correctly identify the radionuclides present. These effects are shown to be compounded due to the subsequent shift in the photon spectra produced by the detector, in this case an inorganic solid scintillator ($CaF_2:Eu$) monitored using a silicon photomultiplier. Using tritiated water as an environmentally relevant, and notoriously difficult to monitor case study, analytical predictions for the shift in the energy spectra as a function of depth of source have been derived. These predictions have been validated using Geant4 simulations and experimental results measured using bespoke instrumentation.

References

  1. W.H. Organization, Guidelines for drinking-water quality, 4th edition [Internet]. [Accessed 2015 Feb 11]. Available from: http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf.
  2. C.N.S. Commission, Tritium in drinking water [Internet]. [Accessed 2015 Feb 4]. Available from: http://nuclearsafety.gc.ca/eng/resources/health/tritium/tritium-in-drinking-water.cfm.
  3. PubChem, Tritiated Water [Internet]. [Accessed 2016 May 27]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Tritiated_water#section=Top.
  4. P. Elmer, MSDS for Ultima Gold [Internet]. [Accessed 2016 Jun 20]. Available from: http://www.perkinelmer.com/Content/MSDSDatabase/MSDS_6013329_Ultima_Gold_(GB).pdf.
  5. Y.H.T. Kawano, H. Ohashi, E. Jamsranjav, Comparative testing of various flow-cell detectors fabricated using $CaF_2$ solid scintillator, Fusion Sci. Technol. 67 (2015) 404-407. https://doi.org/10.13182/FST14-T39
  6. T. Kawano, H. Ohashi, Y. Hamada, E. Jamsranjav, Shielding effect on tritium water monitoring system based on $CaF_2$ flow-cell detector, Nucl. Sci. Tech. 25 (2014) S010401-S010403.
  7. T. Kawano, T. Uda, T. Yamamoto, H. Ohashi, Tritium water monitoring system based on $CaF_2$ flow-cell detector, Fusion Sci. Technol. 60 (2011) 952-955. https://doi.org/10.13182/FST11-A12573
  8. K. Shirahashi, G. Izawa, Y. Murano, Y. Muramastu, K. Yoshihara, Radio-liquid chromatography for tritium labelled organic compounds using $CaF_2$/Eu/scintillator, J. Radioanal. Nucl. Chem. 86 (1984) 1-9. https://doi.org/10.1007/BF02163856
  9. A.A. Kozlov, B.M. Shapiro, M.Y. Shrom, S.V. Bryzgalov, N.D. Betenekov, L.V. Viktorov, E.I. Denisov, A. Yu. Kuznetsov, B.V. Shul'gin, $CaF_2-Eu$ single-crystal scintillation blocks for detecting $\beta$-radiation, At. Energy 76 (1994) 191-194. https://doi.org/10.1007/BF02408190
  10. B.V. Shul-gin, Scintillation detectors working with $CaF_2-Eu$ single crystals, At. Energy 75 (1993) 534-538. https://doi.org/10.1007/BF00738982
  11. M.J. Rudin, W.M. Richardson, P.G. Dumont, W.H. Johnson, In-situ measurement of transuranics using a calcium fluoride scintillation detection system, J. Radiochem. Nucl. Chem. 248 (2001) 445-448. https://doi.org/10.1023/A:1010656815076
  12. S. Gobain, NaI(Tl) and Polyscin(R) NaI(Tl) sodium iodide [Internet]. [Accessed 2017 May 23]. Available from: http://www.crystals.saint-gobain.com/uploadedFiles/SG-Crystals/Documents/NaI(Tl)%20Data%20Sheet.pdf.
  13. R.D. Evans, R.O. Evans, Studies of self-absorption in gamma-ray sources, Rev. Mod. Phys. 20 (1948) 305-326. https://doi.org/10.1103/RevModPhys.20.305
  14. M.S. Badawi, M.M. Gouda, S.S. Nafee, A.M. El-Khatib, E.A. El-Mallah, New algorithm for studying the effect of self attenuation factor on the efficiency of gamma-rays detectors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip 696 (2012) 164-170. https://doi.org/10.1016/j.nima.2012.08.089
  15. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S.R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers. Detect. Assoc. Equip. 506 (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  16. N.P. Laboratory, Kaye and Laby [Internet]. [Accessed 2016 Jun 20]. Available from: http://www.kayelaby.npl.co.uk/.
  17. R. Burek, D. Chocyk, Basic aspects of the mass absorption coefficient of beta particles, J. Radioanal. Nucl. Chem. 209 (1996) 181-191. https://doi.org/10.1007/BF02063542
  18. G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192-203. https://doi.org/10.1016/0021-9991(78)90004-9
  19. Python, Vegas 3.0: Python Package Index [Internet]. [Accessed 2016 May 19]. Available from: https://pypi.python.org/pypi/vegas.
  20. N.J.D. Nagelkerke, A note on a general definition of the coefficient of determination, Biometrika 78 (1991) 691-692. https://doi.org/10.1093/biomet/78.3.691
  21. CERN, Electromagnetic Standard Physics Working Group [Internet]. [Accessed 2016 Jun 19]. Available from: https://geant4.web.cern.ch/geant4/collaboration/working_groups/electromagnetic/.
  22. C. for Radiation Protection Knowledge, Rad Toolbox v. 3.0.0 [Internet]. [Accessed 2015 Jun 24]. Available from: https://crpk.ornl.gov/software/.
  23. N. Yoder, Matlab Peakfinder [Internet]. [Accessed 2016 Jun 25]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder-x0-sel-thresh-extrema-includeendpoints-interpolate-.
  24. F. Corsi, A. Dragone, C. Marzocca, A. Del Guerra, P. Delizia, N. Dinu, C. Piemonte, M. Boscardin, G.F.D. Betta, Modelling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 572 (2007) 416-418. https://doi.org/10.1016/j.nima.2006.10.219
  25. F. Corsi, M. Foresta, C. Marzocca, G. Matarrese, A. Del Guerra, ASIC development for SiPM readout, J. Instrum. 4 (2009) P03004, http://stacks.iop.org/1748-0221/4/i=03/a=P03004.