The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding

  • Jang, Ki-Nam (Dongguk University, Department of Nuclear and Energy System Engineering) ;
  • Kim, Kyu-Tae (Dongguk University, Department of Nuclear and Energy System Engineering)
  • Received : 2016.05.28
  • Accepted : 2017.05.23
  • Published : 2017.10.25


Zirconium alloy cladding tube specimens were irradiated at $380^{\circ}C$ up to a fast neutron fluence of $7.5{\times}10^{24}n/m^2$ in a research reactor to investigate the effect of neutron irradiation on hydride reorientation and mechanical property degradation. Cool-down tests from $400^{\circ}C$ to $200^{\circ}C$ under 150 MPa tensile hoop stress were performed. These tests indicate that the irradiated specimens generated a smaller radial hydride fraction than did the unirradiated specimens and that higher hydrogen content generated a smaller radial hydride fraction. The irradiated specimens of 500 ppm-H showed smaller ultimate tensile strength and plastic strain than those characteristics of the 250 ppm-H specimens. This mechanical property degradation caused by neutron irradiation can be explained by tensile hoop stress-induced microcrack formation on the hydrides in the irradiation-damaged matrix and subsequent microcrack propagation along the hydrides and/or through the matrix.


Supported by : National Research Foundation of Korea (NRF)


  1. J. Bai, N. Gilbon, C. Prioul, D. Francois, Hydride embrittlement in ZIRCALOY-4 plate: part II. Interaction between the tensile stress and the hydride morphology, Metall. Mater. Trans. 25A (1994) 1199-1208.
  2. B. Cox, Y. Wong, A hydrogen uptake micro-mechanism for Zr alloys, J. Nucl. Mater. 270 (1999) 134-146.
  3. S. Min, M. Kim, K. Kim, Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings, J. Nucl. Mater. 441 (2013) 306-314.
  4. M. Kim, H. Kim, S. Min, K. Kim, Cladding cooling rate-dependent hydride reorientation and configuration, Korean J. Met. Mater. 51 (2013) 477-486.
  5. S. Min, M. Kim, C. Won, K. Kim, Effects of cooling rates on hydride reorientation and mechanical properties of zirconium alloy claddings under interim dry storage conditions, Korean J. Met. Mater. 51 (2013) 487-495.
  6. USNRC, Cladding Considerations for the Transportation and Storage of Spent Fuel, SFST-ISG-11 Revision 3, 2003.
  7. H. Chung, Understanding hydride- and hydrogen-related processes in high-burnup cladding in spent-fuel storage and accident situations, in: Proceedings of the International Meeting on LWR Fuel Performance, Orlando, FL, 2004.
  8. K. Colas, A. Motta, J. Almer, M. Daymond, M. Kerr, A. Banchik, In situ study of hydride precipitation kinetics and re-orientation in Zircaloy using synchrotron radiation, Acta Mater. 58 (2010) 6575-6583.
  9. R. Marshall, Influence of fabrication history on stress-oriented hydrides in Zircaloy tubing, J. Nucl. Mater. 24 (1967) 34-48.
  10. M. Louthan Jr., R. Marshall, Control of hydride orientation in Zircaloy, J. Nucl. Mater. 9 (1963) 170-184.
  11. R. Marshall, M. Louthan Jr., Tensile properties of Zircaloy with oriented hydrides, Trans. ASM 56 (1963) 693-700.
  12. S. Min, J. Won, K. Kim, Terminal cool-down temperature-dependent hydride reorientations in Zr-Nb Alloy claddings under dry storage conditions, J. Nucl. Mater. 448 (2014) 172-183.
  13. K. Geelhood, C. Beyer, W. Luscher, PNNL Stress/Strain Correlation for Zircaloy, PNNL-17700, 2008.
  14. CEN-386-P-A, Verification of the Acceptability of a 1-Pin Burnup Limitability of 60MWD/kgU for Combustion Engineering $16{\times}16$ PWR Fuel, 1992.
  15. P. Vizcaino, P.B. Bozzano, A.V. Flores, A.D. Banchik, R.A. Versaci, R.O. Rios, Hydrogen solubility and microstructural changes in Zircaloy-4 due to neutron irradiation, in: 16th International Symposium of the Zirconium in the Nuclear Industry, Chengdu, China, 2010.
  16. P. Vizcaino, A. Banchik, J. Abriata, Solubility of hydrogen in Zircaloy-4: irradiation induced increase and thermal recovery, J. Nucl. Mater. 304 (2002) 96-106.
  17. KHNP, PLUS7 Fuel Design for the APR1400, APR1400-F-M-TR-13001-NP Rev. 0, August 2013.
  18. B. Wirth, Mechanical properties, in: Nuclear Materials Class Note (NE120), U.C. Berkeley, U.S.A, 2007.
  19. H. Kim, I. Kim, S. Park, J. Park, Y. Jeong, Evaluation of hydride effect on fuel cladding degradation, Kor. J. Met. Mater. 48 (2010) 717-724.
  20. W. Qin, J. Szpunar, J. Kozinski, J. Kozinski, Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: a theoretical analysis, Acta Mater. 60 (2012) 4845-4855.
  21. S. Kailas, Dislocations and strengthening mechanisms, in: Materials Science Class Note (MSE2090), Indian Institute of Science, Bangalore, India, 2004.
  22. R.S. Daum, S. Majumdar, Y. Liu, M.C. Billone, Radial-hydride embrittlement of high-burnup Zircaloy-4 fuel cladding, J. Nucl. Sci. Tech. 43 (2006) 1054-1067.
  23. F. Nagase, T. Sugiyama, T. Fuketa, Optimized ring tensile test method and hydrogen effect on mechanical properties of Zircaloy cladding in hoop direction, J. Nucl. Sci. Tech. 46 (2009) 545-552.
  24. R. Bourcier, D. Koss, Hydrogen embrittlement of titanium sheet under multiaxial states of stress, Acta Metall. 32 (1984) 2091-2099.
  25. Y. Fan, D. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of Zircalloy sheet, Metall. Trans. A 16 (1985) 675-689.
  26. J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (1967) 292-303.