DOI QR코드

DOI QR Code

Formation of Au Particles in Cu2-xICu2IIO3-δ (x ≈ 0.20; δ ≈ 0.10) Oxide Matrix by Sol-Gel Growth

  • Das, Bidhu Bhusan (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University) ;
  • Palanisamy, Kuppan (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University) ;
  • venugopal, Potu (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University) ;
  • Sandeep, Eesam (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University) ;
  • Kumar, Karrothu Varun (Functional Materials Chemistry Laboratory, Department of Chemistry, Pondicherry University)
  • Received : 2016.08.26
  • Accepted : 2016.12.27
  • Published : 2017.02.20

Abstract

Formation of Au particles in nonstoichiometric $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxide from aniline + hydrochloric acid mixtures and chloroauric acid in the ratios 30 : 1; 60 : 1; 90 : 1 (S1-S3) by volume and 0.01 mol of copper acetate, $Cu(OCOCH_3)_2.H_2O$, in each case is performed by sol-gel growth. Powder x-ray diffraction (XRD) results show Au particles are dispersed in tetragonal nonstoichiometric dicopper (I) dicopper (II) oxides, $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$). Average crystallite sizes of Au particles determined using Scherrer equation are found to be in the approximate ranges ${\sim}85-140{\AA}$, ${\sim}85-150{\AA}$ and ${\sim}80-150{\AA}$ in S1-S3, respectively which indicate the formation of Au nano-micro size particles in $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Hysteresis behaviour at 300 K having low loop areas and magnetic susceptibility values ${\sim}5.835{\times}10^{-6}-9.889{\times}10^{-6}emu/gG$ in S1-S3 show weakly ferromagnetic nature of the samples. Broad and isotropic electron paramagnetic resonance (EPR) lineshapes of S1-S4 at 300, 77 and 8 K having $g_{iso}$-values ${\sim}2.053{\pm}0.008-2.304{\pm}0.008$ show rapid spin-lattice relaxation process in magnetic $Cu^{2+}$ ($3d^9$) sites as well as delocalized electrons in Au ($6s^1$) nano-micro size particles in the $Cu_{2-x}{^I}Cu{_2}^{II}O_{3-{\delta}}$ ($x{\approx}0.20$; ${\delta}{\approx}0.10$) oxides. Broad and weak UV-Vis diffuse reflectance optical absorption band ~725 nm is assigned to $^2B_{1g}{\rightarrow}^2A_{1g}$ transitions, and the weak band ~470 nm is due to $^2B_{1g}{\rightarrow}^2E_g$ transitions from the ground state $^2B_{1g}$(${\mid}d_{x^2-y^2}$>) of $Cu^{2+}$ ($3d^9$) ions in octahedral coordination having tetragonal distortion.

Keywords

Acknowledgement

Supported by : Korean Chemical Society

References

  1. Jing-Si, W.; Fa-Zheng, J.; Hui-Chao, M.; Xiao-Bo, L.; Ming-Yang, L.; Jing-Lan, K.; Gong-Jun, C.; Yu-Bin, D. Inorg. Chem. 2016, 55, 6685. https://doi.org/10.1021/acs.inorgchem.6b00925
  2. Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Langmuir 2001, 17, 6000. https://doi.org/10.1021/la010389j
  3. Manna, A.; Imae, T.; Yogo, T.; Akai, K.; Okai, M. J. Colloid Interface Sci. 2002, 256, 297. https://doi.org/10.1006/jcis.2002.8691
  4. Hench, L. L.; West, J. K. Chem. Rev. 1990, 90, 33. https://doi.org/10.1021/cr00099a003
  5. Yue, Z.; Li, L.; Zhou, J.; Zhang, H.; Gui, Z. Mater. Sci. Eng. 1999, B64, 68.
  6. Vogel, A. I. Textbook of Quantitative Chemical Analysis; English Language Book Society: Longman, Essex, 1989; p. 368.
  7. Maeland, A.; Flanagan, T. B. Can. J. Phys. 1964, 42, 2364. https://doi.org/10.1139/p64-213
  8. Owen, E. A.; Yates, E. L. J. Chem. Phys. 1935, 3, 605. https://doi.org/10.1063/1.1749562
  9. Suh, I.K.; Ohta, H.; Waseda, Y. J. Mater. Sci. 1988, 23, 757. https://doi.org/10.1007/BF01174717
  10. Roisnel, T.; Rodriquez-Carvajal, J. Mater. Sci. Forum 2001, 378-381, 118. https://doi.org/10.4028/www.scientific.net/MSF.378-381.118
  11. Morgan, P. E. D.; Partin, D. E.; Chamberland, B. L.; O'Keeffe, M. J. Solid State Chem. 1996, 121, 33. https://doi.org/10.1006/jssc.1996.0005
  12. Patterson, A. L. Phys. Rev. 1939, 56, 978. https://doi.org/10.1103/PhysRev.56.978
  13. Bersohn, M.; Baird, A.C. An Introduction to Electron Para Magnetic Resonance; W. A. Benjamin, Inc.: New York, 1966; p. 66.
  14. Das, B. B.; Aruna, S. Indian. J. Chem. 2003, 42A, 1590.
  15. Das, B. B.; Deepa, J. Non-Cryst. Solids 2009, 355, 1663. https://doi.org/10.1016/j.jnoncrysol.2009.05.057
  16. Das, B. B.; Srinivassan, A.; Yogapriya, M.; Kongara, M. R.; Punnoose, A. J. Non-Cryst. Solids 2015, 427, 146. https://doi.org/10.1016/j.jnoncrysol.2015.07.029
  17. Sohn, K. S.; Cho, B.; Park, H. D. J. Am. Ceram. Soc. 1999, 82, 2779.
  18. Ohishi, Y.; Mitachi, S.; Kanamori, T.; Manabe, T. Phys. Chem. Glasses 1983, 24, 135.
  19. Balhausen, C. J. Introduction to Ligand Field Theory; McGraw-Hill Book Company Inc: New York; 1962, p. 269.
  20. Belford, R. L.; Calvin, M.; Belford, G. J. Chem. Phys. 1957, 26, 1165. https://doi.org/10.1063/1.1743485
  21. Chandra, S.; Gupta, K. Transition Met. Chem. 2002, 27, 329. https://doi.org/10.1023/A:1014898706298