DOI QR코드

DOI QR Code

BOUNDED CONVERGENCE THEOREMS

  • Niemiec, Piotr (Instytut Matematyki, Wydzial Matematyki i Informatyki Uniwersytet Jagiellonski)
  • Received : 2015.12.11
  • Published : 2017.01.01

Abstract

There are presented certain results on extending continuous linear operators defined on spaces of E-valued continuous functions (defined on a compact Hausdorff space X) to linear operators defined on spaces of E-valued measurable functions in a way such that uniformly bounded sequences of functions that converge pointwise in the weak (or norm) topology of E are sent to sequences that converge in the weak, norm or weak* topology of the target space. As an application, a new description of uniform closures of convex subsets of C(X, E) is given. Also new and strong results on integral representations of continuous linear operators defined on C(X, E) are presented. A new classes of vector measures are introduced and various bounded convergence theorems for them are proved.

References

  1. R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337-352. https://doi.org/10.4064/sm-15-3-337-352
  2. P. J. Daniell, A general form of integral, Ann. of Math. (2) 19 (1918), no. 4, 279-294. https://doi.org/10.2307/1967495
  3. J. Diestel, Applications of weak compactness and bases to vector measures and vectorial integration, Rev. Roumaine Math. Pures Appl. 18 (1973), 211-224.
  4. J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253-271. https://doi.org/10.1090/S0002-9947-1974-0350420-8
  5. J. Diestel and J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, 1977.
  6. N. Dinculeanu, Vector Measures, Pergamon Press Ltd., Oxford, 1967.
  7. N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York, 1958.
  8. R. Engelking, General Topology, Revised and completed edition (Sigma series in pure mathematics, vol. 6), Heldermann Verlag, Berlin, 1989.
  9. R. K. Goodrich, A Riesz representation theorem in the setting of locally convex spaces, Trans. Amer. Math. Soc. 131 (1968), 246-258. https://doi.org/10.1090/S0002-9947-1968-0222681-4
  10. R. K. Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629-636. https://doi.org/10.1090/S0002-9939-1970-0415386-2
  11. K. Kuratowski and A. Mostowski, Set Theory with an Introduction to Descriptive Set Theory, PWN - Polish Scientific Publishers, Warszawa, 1976.
  12. D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. https://doi.org/10.2140/pjm.1970.33.157
  13. K. Maurin, Analysis, Part II: Integration, Distributions, Holomorphic Functions, Tensor and Harmonic Analysis, D. Reidel Publ. Co., Dordrecht, 1980.
  14. P. Niemiec, Models for subhomogeneous C*-algebras, submitted, arXiv:1310.5595.
  15. B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277-304. https://doi.org/10.1090/S0002-9947-1938-1501970-8
  16. H. P. Rosenthal, A characterization of Banach spaces containing ${\ell}_1$, Proc. Natl. Acad. Sci. USA 71 (1974), 2411-2413. https://doi.org/10.1073/pnas.71.6.2411
  17. W. V. Smith and D. H. Tucker, Weak integral convergence theorems and operator measures, Pacific J. Math. 111 (1984), no. 1, 243-256. https://doi.org/10.2140/pjm.1984.111.243
  18. M. Takesaki, Theory of Operator Algebras I, (Encyclopaedia of Mathematical Sciences, Volume 124), Springer-Verlag, Berlin-Heidelberg-New York, 2002.
  19. D. H. Tucker and S. G. Wayment, Absolute continuity and the Radon-Nikodym theorem, J. Reine Angew. Math. 244 (1970), 1-19.