DOI QR코드

DOI QR Code

GEOMETRIC CLASSIFICATION OF ISOMETRIES ACTING ON HYPERBOLIC 4-SPACE

  • Kim, Youngju (Department of Mathematics Education Konkuk University)
  • Received : 2015.12.05
  • Published : 2017.01.01

Abstract

An isometry of hyperbolic space can be written as a composition of the reflection in the isometric sphere and two Euclidean isometries on the boundary at infinity. The isometric sphere is also used to construct the Ford fundamental domains for the action of discrete groups of isometries. In this paper, we study the isometric spheres of isometries acting on hyperbolic 4-space. This is a new phenomenon which occurs in hyperbolic 4-space that the two isometric spheres of a parabolic isometry can intersect transversally. We provide one geometric way to classify isometries of hyperbolic 4-space using the isometric spheres.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. C. Adams, J. Haas, and P. Scott, Simple closed geodesic in hyperbolic 3-manifolds, Bull. London Math. Soc. 31 (1999), no. 1, 81-86. https://doi.org/10.1112/S0024609398004883
  2. L. V. Ahlfors, Mobius transformations and Clifford numbers, Differential Geometry and Complex Analysis, H. E. Rauch memorial volume, 65-73, Springer-Verlag, Belin, 1985.
  3. L. V. Ahlfors, Old and new in Mobius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 93-105. https://doi.org/10.5186/aasfm.1984.0901
  4. L. V. Ahlfors, On the fixed points of Mobius transformation in ${\mathbb{R}}^n$, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27. https://doi.org/10.5186/aasfm.1985.1005
  5. A. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, Vol. 91, Springer-Verlag, New York, 1983.
  6. C. Cao and P. L. Waterman, Conjugacy invariants of Mobius groups, Quasiconformal Mappings and Analysis, 109-139, Springer, 1995.
  7. T. A. Drumm and J. A. Poritz, Ford and Dirichlet domains for cyclic subgroups of $PSL_2({\mathbb{C}})$ acting on ${\mathbb{H}}_{{\mathbb{R}}}^3$ and ${\partial}{\mathbb{H}}_{{\mathbb{R}}}^3$, Conform. Geom. Dyn. 3 (1999), 116-150. https://doi.org/10.1090/S1088-4173-99-00042-9
  8. S. Hersonsky, Covolume estimates for discrete groups of hyperbolic isometries having parabolic elements, Michigan Math. J. 40 (1993), no. 3, 467-475. https://doi.org/10.1307/mmj/1029004832
  9. T. Jorgensen, On cyclic groups of Mobius transformations, Math. Scand. 33 (1973), 250-260. https://doi.org/10.7146/math.scand.a-11487
  10. Y. Kim, Rigidity and stability for isometry groups in hyperbolic 4-space, Thesis, The Graduate Center, City University of New York, 2008.
  11. B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988.
  12. J. Ratcliffe, Foundation of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149. Springer-Verlag, New York, 1994.
  13. S. P. Tan, Y. L. Wong, and Y. Zhang, Delambre-Gauss formulas for augmented rightangled hexagons in hyperbolic 4-space, Adv. Math. 230 (2012), no. 3, 927-956. https://doi.org/10.1016/j.aim.2012.03.009
  14. K. Th. Vahlen, Uber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), no. 4, 585-593. https://doi.org/10.1007/BF01450354
  15. M. Wada, Conjugacy invariants of Mobius transformations, Complex Variables Theory Appl. 15 (1990), no. 2, 125-133. https://doi.org/10.1080/17476939008814442
  16. P. L. Waterman, Mobius transformation in several dimensions, Adv. Math. 101 (1993), no. 1, 87-113. https://doi.org/10.1006/aima.1993.1043
  17. J. B. Wilker, The quaternion formalism for Mobius groups in four or fewer dimensions, Linear Algebra Appl. 190 (1993), 99-136. https://doi.org/10.1016/0024-3795(93)90222-A