DOI QR코드

DOI QR Code

A HIGH-RESOLUTION VAN LEER-TYPE SCHEME FOR A MODEL OF FLUID FLOWS IN A NOZZLE WITH VARIABLE CROSS-SECTION

  • Received : 2015.10.10
  • Published : 2017.01.01

Abstract

We present a high-resolution van Leer-type numerical scheme for the isentropic model of fluid flows in a nozzle with variable cross-section. Basically, the scheme is an improvement of the Godunov-type scheme. The scheme is shown to be well-balanced, as it can capture exactly equilibrium states. Numerical tests are conducted which include comparisons between the van Leer-type scheme and the Godunov-type scheme. It is shown that the van Leer-type scheme achieves a very good accuracy for initial data belong to both supersonic and supersonic regions, and the exact solution eventually possesses a resonant phenomenon.

Acknowledgement

Supported by : Vietnam National University

References

  1. A. Ambroso, C. Chalons, F. Coquel, and T. Galie, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model, Math. Mod. Numer. Anal. 43 (2009), no. 6, 1063-1097. https://doi.org/10.1051/m2an/2009038
  2. A. Ambroso, C. Chalons, and P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow, Comput. & Fluids 54 (2012), 67-91. https://doi.org/10.1016/j.compfluid.2011.10.004
  3. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput. 25 (2004), no. 6, 2050-2065. https://doi.org/10.1137/S1064827503431090
  4. M. Baudin, F. Coquel, and Q.-H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline, SIAM J. Sci. Comput. 27 (2005), no. 3, 914-936. https://doi.org/10.1137/030601624
  5. M. Ben-Artzi and J. Falcovitz, An Upwind Second-Order Scheme for Compressible Duct Flows, SIAM J. Sci. and Stat. Comput. 7 (1986), 744-768. https://doi.org/10.1137/0907051
  6. R. Botchorishvili, B. Perthame, and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources, Math. Comp. 72 (2003), no. 241, 131-157. https://doi.org/10.1090/S0025-5718-01-01371-0
  7. R. Botchorishvili and O. Pironneau, Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws, J. Comput. Phys. 187 (2003), no. 2, 391-427. https://doi.org/10.1016/S0021-9991(03)00086-X
  8. A. Chinnayya, A.-Y. LeRoux, and N. Seguin, A well-balanced numerical scheme for the approximation of the shallow water equations with topography: the resonance phenomenon, Int. J. Finite 1 (2004), no. 4, 1-33.
  9. C. E. Castro and E. F. Toro, A Riemann solver and upwind methods for a two-phase flow model in non-conservative form, Internat. J. Numer. Methods Fluids 50 (2006), no. 3, 275-307. https://doi.org/10.1002/fld.1055
  10. F. Coquel, K. El Amine, E. Godlewski, B. Perthame, and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows, J. Comput. Phys. 136 (1997), no. 2, 272-288. https://doi.org/10.1006/jcph.1997.5730
  11. F. Coquel, P. Helluy, and J. Schneider, Second-order entropy diminishing scheme for the Euler equations, Int. J. Num. Meth. Fluids 50 (2006), no. 9, 1029-1061. https://doi.org/10.1002/fld.1104
  12. F. Coquel, J.-M. Herard, K. Saleh, and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows, Commun. Math. Sci. 12 (2014), no. 3, 593-600. https://doi.org/10.4310/CMS.2014.v12.n3.a10
  13. F. Coquel, K. Saleh, and N. Seguin, A robust and entropy-satisfying numerical scheme for fluid flows in discontinuous nozzles, Math. Models Methods Appl. Sci. 24 (2014), no. 10, 2043-2083. https://doi.org/10.1142/S0218202514500158
  14. D. H. Cuong and M. D. Thanh, A Godunov-type scheme for the isentropic model of a fluid flow in a nozzle with variable cross-section, Appl. Math. Comput. 256 (2015), 602-629.
  15. G. Dal Maso, P. G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), no. 6, 483-548.
  16. T. Gallouet, J.-M. Herard, and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci. 14 (2004), no. 5, 663-700. https://doi.org/10.1142/S0218202504003404
  17. P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws, Ann. Inst. H. Poincare Anal. Non Lineaire 21 (2004), no. 6, 881-902. https://doi.org/10.1016/j.anihpc.2004.02.002
  18. J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 1-16. https://doi.org/10.1137/0733001
  19. E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math. 52 (1992), no. 5, 1260-1278. https://doi.org/10.1137/0152073
  20. E. Isaacson and B. Temple, Convergence of the 2 ${\times}$ 2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), no. 3, 625-640. https://doi.org/10.1137/S0036139992240711
  21. B. L. Keyfitz, R. Sander, and M. Sever, Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow, Discrete Contin. Dyn. Sys. Ser. B 3 (2003), no. 4, 541-563. https://doi.org/10.3934/dcdsb.2003.3.541
  22. D. Kroner, P. G. LeFloch, and M. D. Thanh, The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section, M2AN Math. Model. Numer. Anal. 42 (2008), no. 3, 425-442. https://doi.org/10.1051/m2an:2008011
  23. D. Kroner and M. D. Thanh, Numerical solutions to compressible flows in a nozzle with variable cross-section, SIAM J. Numer. Anal. 43 (2005), no. 2, 796-824. https://doi.org/10.1137/040607460
  24. P. G. LeFloch and M. D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Commun. Math. Sci. 1 (2003), no. 4, 763-797. https://doi.org/10.4310/CMS.2003.v1.n4.a6
  25. P. G. LeFloch and M. D. Thanh, The Riemann problem for the shallow water equations with discontinuous topography, Commun. Math. Sci. 5 (2007), no. 4, 865-885. https://doi.org/10.4310/CMS.2007.v5.n4.a7
  26. P. G. LeFloch and M. D. Thanh, A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime, J. Comput. Phys. 230 (2011), no. 20, 7631-7660. https://doi.org/10.1016/j.jcp.2011.06.017
  27. D. Marchesin and P. J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, Hyperbolic partial differential equations, III. Comput. Math. Appl. Part A 12 (1986), no. 4-5, 433-455.
  28. S. T. Munkejord, Comparison of Roe-type methods for solving the two-fluid model with and without pressure relaxation, Computers & Fluids 36 (2007), 1061-1080. https://doi.org/10.1016/j.compfluid.2007.01.001
  29. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (1999), 425-467. https://doi.org/10.1006/jcph.1999.6187
  30. D. W. Schwendeman, C. W. Wahle, and A. K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. Comput. Phys. 212 (2006), 490-526. https://doi.org/10.1016/j.jcp.2005.07.012
  31. M. D. Thanh, The Riemann problem for a non-isentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math. 69 (2009), 1501-1519. https://doi.org/10.1137/080724095
  32. M. D. Thanh, A phase decomposition approach and the Riemann problem for a model of two-phase flows, J. Math. Anal. Appl. 418 (2014), no. 2, 569-594. https://doi.org/10.1016/j.jmaa.2014.04.012
  33. M. D. Thanh, Well-balanced Roe-type numerical scheme for a model of two-phase compressible flows, J. Korean Math. Soc. 51 (2014), no. 1, 163-187. https://doi.org/10.4134/JKMS.2014.51.1.163
  34. M. D. Thanh and D. H. Cuong, Existence of solutions to the Riemann problem for a model of two-phase flows, Electron. J. Differential Equations 2015 (2015), no. 32, 1-18.
  35. M. D. Thanh, D. Kroner, and C. Chalons, A robust numerical method for approximating solutions of a model of two-phase flows and its properties, Appl. Math. Comput. 219 (2012), no. 1, 320-344. https://doi.org/10.1016/j.amc.2012.06.022
  36. M. D. Thanh, D. Kroner, and N. T. Nam, Numerical approximation for a Baer-Nunziato model of two-phase flows, Appl. Numer. Math. 61 (2011), no. 5, 702-721. https://doi.org/10.1016/j.apnum.2011.01.004

Cited by

  1. A van Leer-Type Numerical Scheme for the Model of a General Fluid Flow in a Nozzle with Variable Cross Section pp.2315-4144, 2017, https://doi.org/10.1007/s40306-017-0242-z