DOI QR코드

DOI QR Code

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
  • Received : 2015.10.05
  • Published : 2017.01.01

Abstract

In this paper, we study three types of lightlike hypersurfaces, which are called recurrent, Lie recurrent and Hopf lightlike hypersurfaces, of an indefinite Kaehler manifold with a semi-symmetric non-metric connection. We provide several new results on such three types of lightlike hypersurfaces of an indefinite Kaehler manifold or an indefinite complex space form, with a semi-symmetric non-metric connection.

Keywords

semi-symmetric non-metric connection;recurrent;Lie recurrent;Hopf lightlike hypersurface

References

  1. N. S. Agashe and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399-409.
  2. N. S. Agashe and M. R. Chafle, On submanifolds of a Riemannian manifold with semi-symmetric non-metric connection, Tensor (N.S.) 55 (1994), no. 2, 120-130.
  3. G. de Rham, Sur la reductibilite d'un espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344. https://doi.org/10.1007/BF02564308
  4. K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
  5. K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
  6. K. L. Duggal and B. Sahin, Differential Geometry of Lightlike Submanifolds, Frontiers in Mathematics, Birkhauser, 2010.
  7. D. H. Jin, Screen conformal lightlike real hypersurfaces of an indefinite complex space form, Bull. Korean Math. Soc. 47 (2010), no. 2, 341-353. https://doi.org/10.4134/BKMS.2010.47.2.341
  8. D. H. Jin, Lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection, J. Korean Soc. Math. Edu. Ser. B Pure Appl. Math. 19 (2012), no. 3, 211-228.
  9. D. H. Jin, Einstein lightlike hypersurfaces of a Lorentz space form with a semi-symmetric non-metric connection, Bull. Korean Math. Soc. 50 (2013), no. 4, 1367-1376. https://doi.org/10.4134/BKMS.2013.50.4.1367
  10. D. H. Jin, Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric non-metric connection, J. Inequal. Appl. 2013 (2013), 403, 13 pp. https://doi.org/10.1186/1029-242X-2013-403
  11. D. H. Jin, Non-tangential half lightlike submanifolds of semi-Riemannian manifolds with semi-symmetric non-metric connections, J. Korean Math. Soc. 51 (2014), no. 2, 311-323. https://doi.org/10.4134/JKMS.2014.51.2.311
  12. D. H. Jin, Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat 30 (2016), no. 7, 1919-1930. https://doi.org/10.2298/FIL1607919J
  13. D. H. Jin, Geometry of lightlike hypersurfaces of a semi-Riemannian space form with a semi-symmetric non-metric connection, submitted in Indian J. of Pure and Applied Math.
  14. D. H. Jin and J. W. Lee, A classification of half lightlike submanifolds of a semi-Riemannian manifold with a semi-symmetric non-metric connection, Bull. Korean Math. Soc. 50 (2013), no. 3, 705-717. https://doi.org/10.4134/BKMS.2013.50.3.705
  15. E. Yasar, A. C. Coken, and A. Yucesan, Lightlike hypersurfaces in semi-Riemannian manifold with semi-symmetric non-metric connection, Math. Scand. 102 (2008), no. 2, 253-264. https://doi.org/10.7146/math.scand.a-15061