DOI QR코드

DOI QR Code

CHARACTERIZATION OF PRIME SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A VALUATION DOMAIN

  • Mirzaei, Fatemeh ;
  • Nekooei, Reza
  • Received : 2015.10.01
  • Published : 2017.01.01

Abstract

Let $F=R^{(n)}$ be a free R-module of finite rank $n{\geq}2$. In this paper, we characterize the prime submodules of F with at most n generators when R is a $Pr{\ddot{u}}fer$ domain. We also introduce the notion of prime matrix and we show that when R is a valuation domain, every finitely generated prime submodule of F with at least n generators is the row space of a prime matrix.

Keywords

Dedekind domains;$Pr{\ddot{u}}fer$ domains;prime submodules

References

  1. M. Behboodi and M. Sabsevari, Modules satisfying the prime and maximal radical conditions, J. Commut. Algebra 6 (2014), no. 4, 505-524. https://doi.org/10.1216/JCA-2014-6-4-505
  2. I. Chiswell, Introduction to ${\Lambda}$-trees, World Scientific, 2001.
  3. M. Fontana, J. Huckaba, and I. Papick, Prufer Domain, CRC Press, 1996.
  4. R. Gilmer, Multiplicative Ideal Theory, Vol. 90, Queen's University, 1992.
  5. S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math. 31 (2005), no. 1, 75-85.
  6. P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, Second edition, Academic press, San Diego, New York, 1985.
  7. C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.
  8. R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803-1817. https://doi.org/10.1080/00927879208824432
  9. F. Mirzaei and R. Nekooei, On prime submodules of a free module of finite rank over a commutative ring, Comm. Algebra, to appear.
  10. Y. Tiras, A. Harmanci, and P. F. Smith, A characterization of prime submodules, J. Algebra 212 (1999), no. 2, 743-752. https://doi.org/10.1006/jabr.1998.7636