DOI QR코드

DOI QR Code

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit

자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석

  • Go, Ju-Chan (School of Electrical Engineering, Soongsil University) ;
  • Lim, Seung-Taek (School of Electrical Engineering, Soongsil University) ;
  • Lim, Sung-Hun (School of Electrical Engineering, Soongsil University)
  • 고주찬 (숭실대학교 전기공학부) ;
  • 임승택 (숭실대학교 전기공학부) ;
  • 임성훈 (숭실대학교 전기공학부)
  • Received : 2016.11.21
  • Accepted : 2016.11.22
  • Published : 2017.01.01

Abstract

In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

References

  1. E. Thuries, V. D. Pham, Y. Laumond, U. Verhaege, A, Fevrier, M. Collet, and M. Bekhaled, IEEE Trans. On Power Del., 6, 2 (1991). [DOI: http://dx.doi.org/10.1109/61.131138] https://doi.org/10.1109/63.64998
  2. H. Kado and M. Ichikawa, IEEE Trans. on Appl. Supercond., 7, 2 (1997). [DOI: http://dx.doi.org/10.1109/77.614672]
  3. B. Gromoll, G. Ries, W. Schmidt, H. P. Kramer, and H. W. Neumuller, IEEE Trans. on Appl. Supercond., 7, 2 (1997). [DOI: http://dx.doi.org/10.1109/77.614631]
  4. H. Yamaguchi, T. Kataoka, K. Yaguchi, S. Fujita, K. Yoshikawa, and K. Kaiho, IEEE. Trans. Appl. Supercond., 14, 2 (2004). [DOI: http://dx.doi.org/10.1109/TASC.2004.840820] https://doi.org/10.1109/TASC.2004.840820
  5. H. Shimizu, Y. Yokomizu, T. Matsumura, and N. Murayama, IEEE Trans. Appl. Supercond., 12, 1 (2002). [DOI: http://dx.doi.org/10.1109/TASC.2002.1018344] https://doi.org/10.1109/TASC.2002.1018344
  6. M. Ichikawa, H. Kado, M. Shibuya, M. Kojima, M. Kawahara, and T. Matsumura, IEEE Trans. on Appl. Supercond., 13, 2 (2003).
  7. A. Hekmati, M. Hosseini, M. Vakilian, and M. Fardmanesh, Physica C, 472, 39 (2012). [DOI: http://dx.doi.org/10.1016/j.physc.2011.10.007] https://doi.org/10.1016/j.physc.2011.10.007
  8. S. H. Lim, IEEE Trans. Appl. Supercond., 17, 2 (2007). http://dx.doi.org/10.1109/TASC.2007.903960] https://doi.org/10.1109/TASC.2007.903960
  9. S. H. Lim and H. S. Choi, Physica C, 445, 1073 (2006). [DOI: https://doi.org/10.1016/j.physc.2006.05.027]
  10. S. H. Lim, J. F. Moon, and J. C. Kim, IEEE Trans. on Appl. Supercond., 19, 3 (2009). [DOI: https://doi.org/10.1109/TASC.2009.2018053] https://doi.org/10.1109/TASC.2009.2033003
  11. S. H. Lim, S. Ko, and T. H. Han, Physica C, 484, 253 (2013). [DOI: https://doi.org/10.1016/j.physc.2012.03.011] https://doi.org/10.1016/j.physc.2012.03.011
  12. S. C. Ko, T. H. Han, and S. H. Lim, Physics Procedia, 45, 305 (2013). [DOI: https://doi.org/10.1016/j.phpro.2013.05.028] https://doi.org/10.1016/j.phpro.2013.05.028