DOI QR코드

DOI QR Code

Dielectric Properties and Electro-Caloric Effects of Low Temperature Sintering Ba(Ti0.9Zr0.1)O3 Ceramics

저온에서 소결된 Ba(Ti0.9Zr0.1)O3 세라믹스의 유전 특성 및 전기 열량 효과

  • Yoo, Ju-Hyun (Institute of Environment-Friendly Material and Energy, Department of Electrical Engineering, Semyung University)
  • 류주현 (세명대학교 전기공학과 친환경 소재 및 에너지 연구소)
  • Received : 2016.11.12
  • Accepted : 2016.11.25
  • Published : 2017.01.01

Abstract

In this study, in order to develop composition ceramics for refrigeration device application, $Ba(Ti_{0.9}Zr_{0.1})O_3$ composition was fabricated using conventional solid-state method. Electrocaloric effect of this ceramic was investigated using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $150^{\circ}C$. Curie temperature of $Ba(Ti_{0.9}Zr_{0.1})O_3$ ceramics showed $80^{\circ}C$. The maximum value of ${\Delta}T=0.12^{\circ}C$ in ambient temperature of $115^{\circ}C$ under 30 kV/cm was appeared. It is concluded that $Ba(Ti_{0.9}Zr_{0.1})O_3$ ceramics can be applied as refrigeration device application.

References

  1. D. Q. Xiao, Y. C. Wang, R. L. Zhang, S. Q. Peng, J. G. Zhu, and B. Yang, Mater. Chem. Phys., 57, 182 (1998). [DOI: https://doi.org/10.1016/S0254-0584(98)00204-1] https://doi.org/10.1016/S0254-0584(98)00204-1
  2. M. Ozbolt, A. Kitanovski, J. Tusek, and A. Poredos, International Journal of Refrigeration, 40, 174 (2014). [DOI: https://doi.org/10.1016/j.ijrefrig.2013.11.007] https://doi.org/10.1016/j.ijrefrig.2013.11.007
  3. X. C. Zheng, G. P. Zheng, Z. Lin, and Z. Y. Jiang, J. Electroceram., 28, 20 (2012). [DOI: https://doi.org/10.1007/s10832-011-9673-4] https://doi.org/10.1007/s10832-011-9673-4
  4. S. L. Russek and C. B. Zimm, Int. J. Refrig., 29, 1366 (2006). [DOI: https://doi.org/10.1016/j.ijrefrig.2006.07.019] https://doi.org/10.1016/j.ijrefrig.2006.07.019
  5. M. Valant, Prog. Mater. Sci., 57, 980 (2012). [DOI: https://doi.org/10.1016/j.pmatsci.2012.02.001] https://doi.org/10.1016/j.pmatsci.2012.02.001
  6. L. Shebanovs, K. Borman, W. N. Lawless, and A. Kalvane, Ferroelectrics, 273, 137 (2002). [DOI: https://doi.org/10.1080/00150190211761] https://doi.org/10.1080/00150190211761
  7. C. M. Ra, J. H. Yoo, S. H. Choi, and Y. W. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 375 (2015). [DOI: https:// doi.org/10.4313/JKEM2015286375]
  8. Y. Bai, G. P. Zheng, K. Ding, L. Qiao, S. Q. Shi, and D. Guo, J. Appl. Phys., 110, 094103 (2011). [DOI: https://doi.org/10.1063/1.3658251] https://doi.org/10.1063/1.3658251
  9. S. H. Shin, J. H. Yoo, and D. C. Shin, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 797 (2014). [DOI: https://doi.org/10.4313/JKEM20142712797]