Effects of Particle Size of Al2O3 on the Mechanical Properties and Micro-Structures of Al2O3-3YSZ Composites

Al2O3-3YSZ 복합체의 미세구조 및 기계적 특성에 대한 Al2O3 분말 크기의 영향

  • Received : 2016.11.08
  • Accepted : 2016.12.08
  • Published : 2017.01.01


3YSZ + (x) $Al_2O_3$ composites (x = 20, 40, 60, 80 wt%) were fabricated and the influences of particle sizes of $Al_2O_3$ on their microstructures and mechanical properties were investigated with XRD, SEM, vickers hardness and fracture toughness. $Al_2O_3$-3YSZ composites containing $Al_2O_3$ powder of a $0.3{\mu}m$ and an $1.0{\mu}m$, which are here in after named as $Al_2O_3$($0.3{\mu}m$)-3YSZ and $Al_2O_3$($1.0{\mu}m$)-3YSZ, respectively, were made by mixing raw materials, uni-axial pressing and sintering at $1,400^{\circ}C$, $1,500^{\circ}C$, and $1,600^{\circ}C$. $Al_2O_3$($0.3{\mu}m$)-3YSZ composites show the higher density and the better mechanical properties than $Al_2O_3$($1.0{\mu}m$)-3YSZ composites. The Vickers hardness of the $Al_2O_3$($0.3{\mu}m$)-3YSZ composites show a peak value of 1,997 Hv at the content of 60 wt% $Al_2O_3$, which is a slightly higher value in comparison with 1,938 Hv of the $Al_2O_3$($1.0{\mu}m$)-3YSZ composite. However, the fracture toughness of $Al_2O_3$-3YSZ composites monotonically increases with decreasing the content of $Al_2O_3$ without any peak values. $Al_2O_3$($0.3{\mu}m$)-3YSZ and $Al_2O_3$($1.0{\mu}m$)-3YSZ composites sintered at $1,600^{\circ}C$ have a maximum value of a $6.9MPa{\cdot}m^{1/2}$ and a $6.2MPa{\cdot}m^{1/2}$, respectively at the composition of containing 20 wt% $Al_2O_3$. It should be noticed that the mechanical properties and the sintering density of the $Al_2O_3$-3YSZ composites can be enhanced by using more fine $Al_2O_3$ powder due to their denser microstructure and smaller grain size.


  1. B. Adelmann and R. Hellmann, J. Electrical Engineering, 3, 111 (2015). []
  2. N. Rosenberger, B. Steuler, and C. Compson, Applications for Alumina in the Automotive Market, (2015).
  3. J. Kathirvelan and R. Vijayaraghavan, ARPN J. Eng. and Appl. Sci., 9, 2307 (2014).
  4. M. Kang and S. Kang, Ceramics International, 38, 551 (2012). []
  5. T. Hirvikorpi, M. V. Nissi, J. Nikkola, A. Harlin, and M. Karppinen, Surface and Coatings Tech., 205, 5088 (2011). []
  6. Y. Nishimura, E. Mochizuki, and Y. Takahashi, Fuji Electric. Review, 51, 18 (2005).
  7. Y. Imanaka, J. Ceram. Sci. Tech., 6, 291 (2015). [DOI:]
  8. Z. Jouini, Z. Valdez, and D. Malec, Engineering, 8, 561 (2016). [DOI:]
  9. K. Balani, S. R. Bakshi, Y. Chen, T. Laha, and A. Agarwal, J. Nanosci. Nanotechnol., 7, 3553 (2007). [DOI:]
  10. C. H. Chen and H. Awaji, J. Eur. Ceram. Soc., 27, 13 (2007). [DOI:]
  11. D. R. Clarke, M. Oechsner, and N. P. Padture, MRS Bull, 37, 891 (2012). [DOI:]
  12. M.M.R. Boutz, A.J.A. Winnubst, B.V. Langerak, R.J.M.O. Scholtenhuis, K. Kreuwel, and A. J. Burggraaf, J. Mater. Sci., 30, 1854 (1995). [DOI:]
  13. Z. Zivcova, E. Gregorova, W. Pabst, D. S. Smith, A. Michot, and C. Poulier, Starch., 62, 3 (2010). [DOI:]
  14. X. Huang, J. Solid State Electro. Chem., 15, 649 (2011). [DOI:]
  15. W. C. Moffatt and H. K. Bowen, J. Mater. Sci., 24, 3984 (1989). []
  16. N. Claussen, J. Am. Ceram. Soc., 61, 85 (1978). [DOI:]
  17. T. K. Gupta, F. F. Lange, and J. H. Bechtold, J. Mater. Sci., 13, 1464 (1978). [DOI:]
  18. K. Tanaka, J. Mater. Sci., 22, 1501 (1987).
  19. N. Claussen, J. Am. Ceram. Soc., 61, 85 (1978). [DOI:]
  20. J. K. Lee, H. H. Kang, S. D. Seo, E. G. Lee, and H. Kim, J. Mater. Res., 9, 400 (1991).
  21. B. R. Cho, J. H. Chae, B. L. Kim, and J. B. Kang, Mater. Sci. Forum, 724, 249 (2012).
  22. K. T. Faber, Ceram. Eng. Sci. Proc., 5, 408 (1984).