DOI QR코드

DOI QR Code

Effects of Particle Size of Al2O3 on the Mechanical Properties and Micro-Structures of Al2O3-3YSZ Composites

Al2O3-3YSZ 복합체의 미세구조 및 기계적 특성에 대한 Al2O3 분말 크기의 영향

  • Received : 2016.11.08
  • Accepted : 2016.12.08
  • Published : 2017.01.01

Abstract

3YSZ + (x) $Al_2O_3$ composites (x = 20, 40, 60, 80 wt%) were fabricated and the influences of particle sizes of $Al_2O_3$ on their microstructures and mechanical properties were investigated with XRD, SEM, vickers hardness and fracture toughness. $Al_2O_3$-3YSZ composites containing $Al_2O_3$ powder of a $0.3{\mu}m$ and an $1.0{\mu}m$, which are here in after named as $Al_2O_3$($0.3{\mu}m$)-3YSZ and $Al_2O_3$($1.0{\mu}m$)-3YSZ, respectively, were made by mixing raw materials, uni-axial pressing and sintering at $1,400^{\circ}C$, $1,500^{\circ}C$, and $1,600^{\circ}C$. $Al_2O_3$($0.3{\mu}m$)-3YSZ composites show the higher density and the better mechanical properties than $Al_2O_3$($1.0{\mu}m$)-3YSZ composites. The Vickers hardness of the $Al_2O_3$($0.3{\mu}m$)-3YSZ composites show a peak value of 1,997 Hv at the content of 60 wt% $Al_2O_3$, which is a slightly higher value in comparison with 1,938 Hv of the $Al_2O_3$($1.0{\mu}m$)-3YSZ composite. However, the fracture toughness of $Al_2O_3$-3YSZ composites monotonically increases with decreasing the content of $Al_2O_3$ without any peak values. $Al_2O_3$($0.3{\mu}m$)-3YSZ and $Al_2O_3$($1.0{\mu}m$)-3YSZ composites sintered at $1,600^{\circ}C$ have a maximum value of a $6.9MPa{\cdot}m^{1/2}$ and a $6.2MPa{\cdot}m^{1/2}$, respectively at the composition of containing 20 wt% $Al_2O_3$. It should be noticed that the mechanical properties and the sintering density of the $Al_2O_3$-3YSZ composites can be enhanced by using more fine $Al_2O_3$ powder due to their denser microstructure and smaller grain size.

References

  1. B. Adelmann and R. Hellmann, J. Electrical Engineering, 3, 111 (2015). [https://doi.org/10.17265/2328-2223/2015.03.001]
  2. N. Rosenberger, B. Steuler, and C. Compson, Applications for Alumina in the Automotive Market, http://www.almatis.com/media/67056/lr_applications_for_alumina_in_the_automotive_market_ca_2015.pdf (2015).
  3. J. Kathirvelan and R. Vijayaraghavan, ARPN J. Eng. and Appl. Sci., 9, 2307 (2014).
  4. M. Kang and S. Kang, Ceramics International, 38, 551 (2012). [http://dx.doi.org/10.1016/j.ceramint.2011.05.075] https://doi.org/10.1016/j.ceramint.2011.05.075
  5. T. Hirvikorpi, M. V. Nissi, J. Nikkola, A. Harlin, and M. Karppinen, Surface and Coatings Tech., 205, 5088 (2011). [http://dx.doi.org/10.1016/j.surfcoat.2011.05.017] https://doi.org/10.1016/j.surfcoat.2011.05.017
  6. Y. Nishimura, E. Mochizuki, and Y. Takahashi, Fuji Electric. Review, 51, 18 (2005).
  7. Y. Imanaka, J. Ceram. Sci. Tech., 6, 291 (2015). [DOI: https://doi.org/10.4416/JCST2015-00050]
  8. Z. Jouini, Z. Valdez, and D. Malec, Engineering, 8, 561 (2016). [DOI: https://doi.org/10.4236/eng.2016.89052] https://doi.org/10.4236/eng.2016.89052
  9. K. Balani, S. R. Bakshi, Y. Chen, T. Laha, and A. Agarwal, J. Nanosci. Nanotechnol., 7, 3553 (2007). [DOI: https://doi.org/10.1166/jnn.2007.851] https://doi.org/10.1166/jnn.2007.851
  10. C. H. Chen and H. Awaji, J. Eur. Ceram. Soc., 27, 13 (2007). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.04.182] https://doi.org/10.1016/j.jeurceramsoc.2006.04.182
  11. D. R. Clarke, M. Oechsner, and N. P. Padture, MRS Bull, 37, 891 (2012). [DOI: https://doi.org/10.1557/mrs.2012.232] https://doi.org/10.1557/mrs.2012.232
  12. M.M.R. Boutz, A.J.A. Winnubst, B.V. Langerak, R.J.M.O. Scholtenhuis, K. Kreuwel, and A. J. Burggraaf, J. Mater. Sci., 30, 1854 (1995). [DOI: https://doi.org/10.1007/BF00351622] https://doi.org/10.1007/BF00351622
  13. Z. Zivcova, E. Gregorova, W. Pabst, D. S. Smith, A. Michot, and C. Poulier, Starch., 62, 3 (2010). [DOI: https://doi.org/10.1002/star.200900139] https://doi.org/10.1002/star.200900139
  14. X. Huang, J. Solid State Electro. Chem., 15, 649 (2011). [DOI: https://doi.org/10.1007/s10008-010-1264-9] https://doi.org/10.1007/s10008-010-1264-9
  15. W. C. Moffatt and H. K. Bowen, J. Mater. Sci., 24, 3984 (1989). [https://doi.org/10.1007/BF01168961] https://doi.org/10.1007/BF01168961
  16. N. Claussen, J. Am. Ceram. Soc., 61, 85 (1978). [DOI: https://doi.org/10.1111/j.1151-2916.1978.tb09237.x] https://doi.org/10.1111/j.1151-2916.1978.tb09237.x
  17. T. K. Gupta, F. F. Lange, and J. H. Bechtold, J. Mater. Sci., 13, 1464 (1978). [DOI: https://doi.org/10.1007/BF00553200] https://doi.org/10.1007/BF00553200
  18. K. Tanaka, J. Mater. Sci., 22, 1501 (1987). https://doi.org/10.1007/BF01233154
  19. N. Claussen, J. Am. Ceram. Soc., 61, 85 (1978). [DOI: https://doi.org/10.1111/j.1151-2916.1978.tb09237.x] https://doi.org/10.1111/j.1151-2916.1978.tb09237.x
  20. J. K. Lee, H. H. Kang, S. D. Seo, E. G. Lee, and H. Kim, J. Mater. Res., 9, 400 (1991).
  21. B. R. Cho, J. H. Chae, B. L. Kim, and J. B. Kang, Mater. Sci. Forum, 724, 249 (2012). https://doi.org/10.4028/www.scientific.net/MSF.724.249
  22. K. T. Faber, Ceram. Eng. Sci. Proc., 5, 408 (1984).