DOI QR코드

DOI QR Code

NEW EXTREMAL BINARY SELF-DUAL CODES OF LENGTHS 66 AND 68 FROM CODES OVER Rk,m

  • Kaya, Abidin (Department of Computer Engineering Bursa Orhangazi University) ;
  • Tufekci, Nesibe (Department of Mathematics Fatih University)
  • Received : 2015.03.24
  • Published : 2017.01.31

Abstract

In this work, four circulant and quadratic double circulant (QDC) constructions are applied to the family of the rings $R_{k,m}$. Self-dual binary codes are obtained as the Gray images of self-dual QDC codes over $R_{k,m}$. Extremal binary self-dual codes of length 64 are obtained as Gray images of ${\lambda}-four$ circulant codes over $R_{2,1}$ and $R_{2,2}$. Extremal binary self-dual codes of lengths 66 and 68 are constructed by applying extension theorems to the ${\mathbb{F}}_2$ and $R_{2,1}$ images of these codes. More precisely, 10 new codes of length 66 and 39 new codes of length 68 are discovered. The codes with these weight enumerators are constructed for the first time in literature. The results are tabulated.

References

  1. K. Betsumiya, S. Georgiou, T. A. Gulliver, M. Harada, and C. Koukouvinos, On self-dual codes over some prime fields, Discrete Math. 262 (2003), no. 1-3, 37-58. https://doi.org/10.1016/S0012-365X(02)00520-4
  2. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. https://doi.org/10.1006/jsco.1996.0125
  3. R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory 37 (1991), no. 4, 1222-1225. https://doi.org/10.1109/18.86979
  4. J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990), no. 6, 1319-1333. https://doi.org/10.1109/18.59931
  5. S. T. Dougherty, T. A. Gulliver, and M. Harada, Extremal binary self dual codes, IEEE Trans. Inform. Theory 43 (1997), no. 6, 2036-2047. https://doi.org/10.1109/18.641574
  6. S. T. Dougherty, J.-L. Kim, H. Kulosman, and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl. 16 (2010), no. 1, 14-26. https://doi.org/10.1016/j.ffa.2009.11.004
  7. P. Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), no. 1, 85-107. https://doi.org/10.1006/jcta.2001.3198
  8. S. Han, H. Lee, and Y. Lee, Construction of self-dual codes over ${\mathbb{F}}_2$ + $u{\mathbb{F}}_2$, Bull. Korean Math. Soc. 49 (2012), no. 1, 135-143. https://doi.org/10.4134/BKMS.2012.49.1.135
  9. S. Karadeniz, B. Yildiz, and N. Aydin, Extremal binary self-dual codes of lengths 64 and 66 from four-circulant constructions over codes ${\mathbb{F}}_2$ + $u{\mathbb{F}}_2$, Filomat 28 (2014), no. 5, 937-945. https://doi.org/10.2298/FIL1405937K
  10. A. Kaya and N. Tufekci, Binary generator matrices of new extremal self-dual binary codes of lengths 66 and 68, available online at http://www.fatih.edu.tr/-akaya/ newbinary66-68.html
  11. A. Kaya and B. Yildiz, New extremal binary self-dual codes of length 68, J. Algebra Comb. Discrete Struct. Appl. 1 (2014), no. 1, 29-39.
  12. A. Kaya and B. Yildiz, Various constructions for self-dual codes over rings and new binary self-dual codes, to appear in Discrete Mathematics.
  13. A. Kaya, B. Yildiz, and I. Siap, New extremal binary self-dual codes from ${\mathbb{F}}_4$ +$u{\mathbb{F}}_4$-lifts of quadratic double circulant codes over ${\mathbb{F}}_4$, available online at http://arxiv.org/abs/1405.7147.
  14. H. J. Kim, Self-dual codes and fixed-point-free permutations of order 2, Bull. Korean Math. Soc. 51 (2014), no. 4, 1175-1186. https://doi.org/10.4134/BKMS.2014.51.4.1175
  15. J.-L. Kim, New extremal self-dual codes of lengths 36, 38 and 58, IEEE Trans. Inform. Theory 47 (2001), no. 1, 386-393. https://doi.org/10.1109/18.904540
  16. E. M. Rains, Shadow bounds for self dual codes, IEEE Trans. Inform. Theory 44 (1998), no. 1, 134-139. https://doi.org/10.1109/18.651000
  17. N. Tufekci and B. Yildiz, On codes over $R_{k,m}$ and constructions for new binary self-dual codes, to appear in Mathematica Slovaca.
  18. J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555-575. https://doi.org/10.1353/ajm.1999.0024
  19. N. Yankov, Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7, Adv. Math. Commun. 8 (2014), no. 1, 73-81. https://doi.org/10.3934/amc.2014.8.73
  20. N. Yankov, M.-H. Lee, M. Gurel, and M. Ivanova, Self-dual codes with an automorphism of order 11, IEEE Trans. Inform. Theory 61 (2015), no. 3, 1188-1193. https://doi.org/10.1109/TIT.2015.2396915
  21. B. Yildiz and S. Karadeniz, Linear codes over ${\mathbb{F}}_2$ + $u{\mathbb{F}}_2$ + $v{\mathbb{F}}_2$ + $uv{\mathbb{F}}_2$, Des. Codes Cryptogr. 54 (2010), no. 1, 61-81. https://doi.org/10.1007/s10623-009-9309-8

Cited by

  1. New extremal binary self-dual codes of lengths 64 and 66 from R 2 -lifts vol.46, 2017, https://doi.org/10.1016/j.ffa.2017.04.003