DOI QR코드

DOI QR Code

소하천 하구(남해 당항포)에서 자연적, 인위적 요인이 영양염 분포에 미치는 영향

Characteristics of Nutrient Distribution by the Natural and Artificial Controlling Factors in Small Stream Estuary

  • KANG, SUNGCHAN (Department of Oceanography, Pusan National University) ;
  • PARK, SOHYUN (Department of Oceanography, Pusan National University) ;
  • AN, SOONMO (Department of Oceanography, Pusan National University)
  • 투고 : 2016.07.26
  • 심사 : 2017.01.31
  • 발행 : 2017.02.28

초록

본 연구는 소하천 하구의 영양염 분포를 조절하는 요인에 대해 알아보기 위하여 수행되었다. 남해안 당항포에 위치한 세 하천(닫힌 하구: 고성천, 열린 하구: 구만천, 마암천)에서 2010-12년까지 계절별로 영양염(질산염, 암모늄, 인산염) 농도를 측정하였다. 고성천의 댐은 담수의 희석을 막고 체류시간을 증가시켜 높은 영양염 농도의 원인이 되어 인위적인 요인이 소하천 하구의 영양염 분포에 중요함을 나타내었다. 그 외에 물리, 기후, 생지화학적 요인이 세 하천 영양염 분포에 영향을 주었다. 세 하천 모두에서 질산염은 상류에서 높고 하류로 갈수록 감소하였다. 이것은 상류 집수역에서 공급이 많고, 하류로 갈수록 희석 및 하구 내 생지화학적 과정에 의한 제거가 활발하기 때문으로 여겨진다. 특히 탈질소화 등 대표적인 생지화학적 질소영양염 제거과정은 상류에서 하류로 갈수록 감소하는 경향이 뚜렷하였다. 그러나 암모늄과 인산염은 하천에서 유입되는 농도가 높은 경우에만 상류에서 하류로 갈수록 농도가 낮아지는 경향이 뚜렷하게 나타났다. 영양염 농도의 계절 분포는 여름철에 낮고, 겨울철에 높은 경향을 보였다. 여름철 유량으로 인해 체류시간이 감소하였고, 희석 증가로 하천 내 영양염 농도를 감소시켰으며, 높은 수온으로 인한 생물 생산에 의한 영양염 제거 역시 낮은 영양염 농도에 영향을 주었다. 소하천 하구는 높은 질소제거율(-k) 을 가지는 등 대형하구와는 구별되는 영양염 거동을 보이며 향후 소하천 하구 관리를 위해서는 이러한 특성을 파악하는 것이 필수적이다.

키워드

Small stream estuary;Nutrient distribution;Denitrification

과제정보

연구 과제번호 : 내만 빈산소수괴 해소기술개발

연구 과제 주관 기관 : 한국해양과학기술진흥원

참고문헌

  1. 건설교통부, 1993. 죽천천.고성천.진전천.연초천 하천정비기본계획.
  2. 경상남도, 2008. 마암천.구만천.수양천 하천정비기본계획.
  3. 국토해양부, 2009. 하구역 관리체제 구축연구(III)-섬진강 하구-.
  4. 권기영, 문창호, 이재성, 양성렬, 박미옥, 이필용, 2004. 섬진강 하구역에서 영양염의 하구내 거동과 플럭스. 한국해양학회지, 9(4): 153-163.
  5. 기상청, 기상년도 각년도.
  6. 김규범, 황동운, 류재웅, 이용우, 2005. 한반도 연안 해역에서 해저 지하수 유출의 환경 생태학적 중요성. 한국해양학회지, 10(4): 204-212.
  7. 김동선, 김경희, 2009. 황해 근소만 조간대 퇴적물에서 인산염 흡착이 저층플럭스에 미치는 영향. Ocean and Polar Research, 31(3): 247-255. https://doi.org/10.4217/OPR.2009.31.3.247
  8. 김진호, 한국헌, 이종식, 2008. 농촌유역의 강우사상별 농업 비점원오염물질 유출특성. 한국물환경학회지, 24(1): 69-77.
  9. 신은성, 최지용, 이동훈, 2001. 농업지역의 비점오염물질 유출특성에 관한 연구. 한국물환경학회지, 17(3): 299-311.
  10. 안순모, 이상룡, 최재웅, 2011. 하구 생태 복원을 위한 생태구역 구분; 남해 고성만 고성천 인근 하구의 예. 한국해양학회지 바다, 16(2): 70-80.
  11. 안태웅, 범봉수, 김태훈, 최이송, 오종민, 2013. 불투수성 지역의 강우유출수에 대한 비점오염물질의 초기유출현상 분석. 대한환경공학회지, 35(9): 643-653.
  12. 양재삼, 정용훈, 지광희, 김현수, 최정훈, 김원장, 2008. 새만금 방조제 체절 이후 초기의 수질변화에 관한 연구. 한국해양환경.에너지학회지, 11(4): 199-213.
  13. 양재삼, 정주영, 허진영, 이상호, 최진용, 1999. 금강하구의물질수지 1. 영양염의 계절적 분포. 한국해양학회지 바다, 4(4): 71-79.
  14. 양해근, 2006. 강우시 비점오염물질의 유출특성에 관한 연구-곡성천 상.하류를 대상으로. 대한지리학회지, 41(4): 418-434.
  15. 이지영, 2009. 연안과 심해 퇴적물에서 질산염 환원과정의 중요성. 이학석사학위논문, 부산대학교, 부산.
  16. 이지영, 권지남, 안순모, 2012. 낙동강 하구 갯벌 퇴적물에서 강을 통한 질산염 우입에 따른 질소순환의 계절변화. 한국해양학회지 바다, 17(2): 120-129.
  17. 정하영, 조경제, 2003. 낙동강 하류 수계에서 저질퇴적층의 SOD와 영양염 용출. 한국하천호수학회지, 36(3): 322-335.
  18. 해양수산부. (2014). 하구역 종합관리시스템 개발연구.
  19. 허낙원, 이지영, 최재웅, 안순모, 2011. 남해안 주요 하구 갯벌 퇴적물의 탈질소화를 통한 질소 영양염 제거. 한국해양학회지 바다, 16(2): 81-96.
  20. 현정호, 정경호, 박용철, 최중기, 1999. 한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할. 한국해양학회지 바다, 4(1): 33-39.
  21. Alexander R.B., R.A. Smith and G.E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403: 758-761. https://doi.org/10.1038/35001562
  22. An, S. and S.B. Joye, 2001. Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography, 46(1): 62-74. https://doi.org/10.4319/lo.2001.46.1.0062
  23. Arheimer, B. and R. Liden, 2000. Nitrogen and phosphorus concentrations from agricultural catchments-influence of spatial and temporal variables. Journal of Hydrology, 227(1): 140-159. https://doi.org/10.1016/S0022-1694(99)00177-8
  24. Billen, G., M. Somville, E.D. Becker and P. Servais, 1985. A nitrogen budget of the Scheldt hydrographical basin. Netherlands Journal of Sea Research, 19(3): 223-230. https://doi.org/10.1016/0077-7579(85)90027-4
  25. Brin, L.D., A.E. Giblin and J.J. Rich, 2014. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnol. Oceanogr, 59(3): 851-860. https://doi.org/10.4319/lo.2014.59.3.0851
  26. Chang, W.K., J. Ryu, Y. Yi., W.C. Lee, C.W. Lee, D. Kang, C.H. Lee, S. Hong, J. Nam and J.S. Khim, 2012. Improved water quality in response to pollution control measures at Masan Bay, Korea. Marine pollution bulletin, 64(2): 427-435. https://doi.org/10.1016/j.marpolbul.2011.11.011
  27. Clavero, V., J.J. Izquierdo, J.A. Fernandez and F.X. Niell, 2000. Seasonal fluxes of phosphate and ammonium across the sediment-water interface in a shallow small estuary (Palmones River, southern Spain). Marine ecology. Progress series, 198: 51-60. https://doi.org/10.3354/meps198051
  28. Cooper, A.B. and J.G. Cooke, 1984. Nitrate loss and transformation in 2 vegetated headwater streams. New Zealand Journal of Marine and Freshwater Research, 18(4): 441-450. https://doi.org/10.1080/00288330.1984.9516065
  29. Cowan, J.L.W., J.R. Pennock and W.R, Boynton, 1996. Seasonal and interannual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): regulating factors and ecological significance. Marine ecology progress series. Oldendorf, 141(1): 229-245. https://doi.org/10.3354/meps141229
  30. Day, J.H., 1989. Estuarine ecology. Wiley, 106-109 pp.
  31. Ensign, S.H. and M.W. Doyle, 2006. Nutrient spiraling in streams and river networks. Journal of Geophysical Research: Biogeosciences (2005-2012), 111(G4).
  32. Fairbridge, R.W., 1980. The estuary: its definition and geodynamic cycle. Chemistry and biogeochemistry of estuaries, wiley, 1136 pp.
  33. Fear, J.M., S.P. Thompson, T.E. Gallo and H.W. Paerl, 2005. Denitrification rates measured along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, USA. Estuaries, 28(4): 608-619. https://doi.org/10.1007/BF02696071
  34. Giblin, A.E., N.B. Weston, G.T. Banta, J. Tucker and C.S. Hopkinson, 2010. The effects of salinity on nitrogen losses from an oligohaline estuarine sediment. Estuaries and Coasts, 33(5): 1054-1068. https://doi.org/10.1007/s12237-010-9280-7
  35. Groffman, P.M. and M.K. Crawford, 2003. Denitrification potential in urban riparian zones. Journal of Environmental Quality, 32(3): 1144-1149. https://doi.org/10.2134/jeq2003.1144
  36. Gumbricht, T., 1993. Nutrient removal processes in freshwater submersed macrophyte systems. Ecological Engineering, 2(1): 1-30. https://doi.org/10.1016/0925-8574(93)90024-A
  37. Hathaway, J.M., R.S. Tucker, J.M. Spooner and W.F. Hunt, 2012. A traditional analysis of the first flush effect for nutrients in stormwater runoff from two small urban catchments. Water, Air, & Soil Pollution, 223(9): 5903-5915. https://doi.org/10.1007/s11270-012-1327-x
  38. Herbert, R.A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS microbiology reviews, 23(5): 563-590. https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  39. Herrman, K.S., V. Bouchard and R.H. Moore, 2008. Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia, 598(1): 305-314. https://doi.org/10.1007/s10750-007-9164-4
  40. Hobbie, J.E., 2000. Chesapeake Bay eutrophication model. In estuarine science: A synthetic approach to research and practice. ISLAND PRESS, 363-404 pp.
  41. Hu, J. and S. Li, 2009. Modeling the mass fluxes and transformations of nutrients in the Pearl River Delta, China. Journal of Marine Systems, 78(1): 146-167. https://doi.org/10.1016/j.jmarsys.2009.05.001
  42. Huang, Q., H. Shen, Z.,Wang, X. Liu and R. Fu, 2006. Influences of natural and anthropogenic processes on the nitrogen and phosphorus fluxes of the Yangtze Estuary, China. Regional Environmental Change, 6(3): 125-131. https://doi.org/10.1007/s10113-005-0001-x
  43. Jickells, T.D., 1998. Nutrient biogeochemistry of the coastal zone. Science, 281(5374): 217-222. https://doi.org/10.1126/science.281.5374.217
  44. Jones, M.N., 1984. Nitrate reduction by shaking with cadmium: alternative to cadmium column. Water Research, 18(5), 643-646. https://doi.org/10.1016/0043-1354(84)90215-X
  45. Kaul, L.W. and P.N Froelich, 1984. Modeling estuarine nutrient geochemistry in a simple system. Geochimica et cosmochimica Acta, 48(7): 1417-1433. https://doi.org/10.1016/0016-7037(84)90399-5
  46. Lee, J. and S. An, 2015. Effect of dikes on the distribution and characteristics of Phragmites australis in temperate intertidal wetlands located in the South Sea of Korea. Ocean Science Journal, 50(1): 49-59. https://doi.org/10.1007/s12601-015-0004-6
  47. Lee, J.H. and K.W. Bang, 2000. Characterization of urban stormwater runoff. Water Research, 34(6): 1773-1780. https://doi.org/10.1016/S0043-1354(99)00325-5
  48. Li, L.Q., C.Q. Yin, Q.C. He and L.L. Kong, 2007. First flush of storm runoff pollution from an urban catchment in China. Journal of Environmental Sciences, 19(3): 295-299. https://doi.org/10.1016/S1001-0742(07)60048-5
  49. Liu, S.M., G.H. Hong, J. Zhang, X.W. Ye and X.L. Jiang, 2009. Nutrient budgets for large Chinese estuaries. Biogeosciences, 6(10): 2245-2263. https://doi.org/10.5194/bg-6-2245-2009
  50. Liu, S.M., J. Zhang, H.T. Chen, Y. Wu, H. Xiong, and Z.F. Zhang, 2003. Nutrients in the Changjiang and its tributaries. Biogeochemistry, 62(1): 1-18. https://doi.org/10.1023/A:1021162214304
  51. Malecki, L.M., J.R. White and K.R. Reddy, 2004. Nitrogen and phosphorus flux rates from sediment in the lower St. Johns River estuary. Journal of environmental quality, 33(4): 1545-1555. https://doi.org/10.2134/jeq2004.1545
  52. McColl, R.H.S, 1974. Self-purification of small freshwater streams: phosphate, nitrate, and ammonia removal. New Zealand journal of marine and freshwater research, 8(2): 375-388. https://doi.org/10.1080/00288330.1974.9515512
  53. Moon, C.H., 1989. Studies on the Phytoplankton and Nutrients in the Yeosu Haeman. Bull. Korean. Fish. Soc. 22(6): 408-414.
  54. Mulholland, P.J., A.M. Helton, G.C. Poole, R.O. Hall, S.K. Hamilton, B.J. Peterson, J.H. Tank, L.R. Ashkenas, L.W. Cooper, C.N. Dahm, W.K. Dodds, S.E.G. Findlay, S.V. Gregory, N.B. Grimm, S.L. Johnson, W.H. McDowell, J.L. Meyer, H.M. Valett, J.R. Webster, C.P. Arango, J.J. Beaulieu, M.J. Bernot, A.J. Burgin, C.L. Crenshaw, L.T. Johnson, B.R. Niederlehner, J.M. O'Brien, J.D. Potter, R.W. Sheibley, D.J. Sobota and S.M. Thomas, 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184): 202-205. https://doi.org/10.1038/nature06686
  55. Newbold, J.D., 1992. Cycles and spirals of nutrient. The Rivers Handbook (Vol. 1), CalowP, PettsGE (eds). Blackwell Science: Oxford, UK; 379-408 pp.
  56. Newbold, J.D., J.W. Elwood, R.V. O'Neill and W.V. Winkle, 1981. Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences, 38(7): 860-863. https://doi.org/10.1139/f81-114
  57. Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology, 9(4): 357-361. https://doi.org/10.1111/j.1574-6941.1992.tb01771.x
  58. Pacini, N. and R. Gachter, 1999. Speciation of riverine particulate phosphorus during rain events. Biogeochemistry, 47(1): 87-109.
  59. Peterson, B.J., W.M., Wollheim, P.J. Mulholland, J.R. Webster, J.L. Meyer, J.L. Tank, J.L. Tank, E. Marti, W.B. Bowden, H.M. Valett, A.E. Hershey, W.H. McDowell, W.K. Dodds, S.K. Hamilton, S. Gregory and Morrall, D.D., 2001. Control of nitrogen export from watersheds by headwater streams. Science, 292(5514): 86-90. https://doi.org/10.1126/science.1056874
  60. Rendell, A.R., T.M. Horrobin, T.D. Jickells, H.M. Edmunds, J. Brown and S.J. Malcolm, 1997. Nutrient cycling in the Great Ouse estuary and its impact on nutrient fluxes to The Wash, England. Estuarine, Coastal and Shelf Science, 45(5): 653-668. https://doi.org/10.1006/ecss.1996.0226
  61. Royer, T.V., J.L. Tank and M.B. David, 2004. Transport and fate of nitrate in headwater agricultural streams in Illinois. Journal of Environmental Quality, 33(4): 1296-1304. https://doi.org/10.2134/jeq2004.1296
  62. Sanders, R.J., T. Jickells, S. Malcolm, J. Brown, D. Kirkwood, A. Reeve, J. Taylor, T. Horrobin and C. Ashcroft, 1997. Nutrient fluxes through the Humber estuary. Journal of Sea Research, 37(1): 3-23. https://doi.org/10.1016/S1385-1101(96)00002-0
  63. Schaller, J.L., T.V. Royer, M.B. David and J.L. Tank, 2004. Denitrification associated with plants and sediments in an agricultural stream. Journal of the North American Benthological Society, 23(4): 667-676. https://doi.org/10.1899/0887-3593(2004)023<0667:DAWPAS>2.0.CO;2
  64. Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography, 33(4): 702-724.
  65. Sharp, J.H., C.H. Culberson, and T.M. Church, 1982. The chemistry of the Delaware estuary. General considerations. Limnology and Oceanography, 27(6): 1015-1028. https://doi.org/10.4319/lo.1982.27.6.1015
  66. Sharp, J.H., J.R. Pennock, T.M. Church, J.M. Tramontano, and L.A. Cifuentes, 1984. Estuarine Interaction of Nutrients, Organics, and Metals: A Case Study in the Delaware Estuary. The Estuary as a Filter, Academic Press, Orlando FL. 1984. NA 80 AA-D-00106. 241-258 pp.
  67. Shen, Z.L. and Q. Liu, 2009. Nutrients in the changjiang river. Environmental monitoring and assessment, 153(1-4): 27-44. https://doi.org/10.1007/s10661-008-0334-2
  68. Strickland, J.D.H. and T.R. Parsons, 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, 310.
  69. Utley, B.C., G. Vellidis, R. Lowrance and M.C. Smith, 2008. Factors Affecting Sediment Oxygen Demand Dynamics in Blackwater Streams of Georgia's Coastal Plain1. JAWRA Journal of the American Water Resources Association, 44(3),: 742-753. https://doi.org/10.1111/j.1752-1688.2008.00202.x
  70. Wall, L.G., J.L. Tank, T.V. Royer and M.J. Bernot, 2005. Spatial and temporal variability in sediment denitrification within an agriculturally influenced reservoir. Biogeochemistry, 76(1): 85-111. https://doi.org/10.1007/s10533-005-2199-6
  71. Zhang, J., 1996. Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16(8): 1023-1045. https://doi.org/10.1016/0278-4343(95)00055-0