DOI QR코드

DOI QR Code

Investigation of Electrical Properties & Mechanical Quality Factor of Piezoelectric Material (PZT-4A)

  • Butt, Zubair (Dept. of Mechatronics Engineering, UET Taxila, Chakwal Campus) ;
  • Anjum, Zeeshan (Dept. of Mechanical Engineering, UET Taxila) ;
  • Sultan, Amir (Dept. of Mechatronics Engineering, UET Taxila, Chakwal Campus) ;
  • Qayyum, Faisal (Dept. of Mechanical Engineering, UET Taxila) ;
  • Khurram Ali, Hafiz Muhammad (Dept. of Mechatronics Engineering, UET Taxila, Chakwal Campus) ;
  • Mehmood, Shahid (Dept. of Mechatronics Engineering, UET Taxila, Chakwal Campus)
  • Received : 2016.04.19
  • Accepted : 2016.10.31
  • Published : 2017.03.01

Abstract

Piezoelectricity is the capability of a piezoelectric material to change mechanical energy into electrical energy. The determination of electrical and mechanical properties plays a significant role in characterizing the piezoelectric material. The energy losses characteristics of piezoelectric material can be described by mechanical quality factor. In this paper, the output voltage and mechanical quality factor of Lead Zirconate Titanate (PZT-4A) piezoelectric material is determined under various resistance and loading conditions by using the test setup. The commercial FEM software ABAQUS is used to analyze the performance of piezoelectric material under static loading conditions. It is observed that these properties affect the performance of a material particularly in the designing of smart structures. The experimental results are partially compared to the simulation values.

Keywords

Piezoelectricity;PZT-4A;Mechanical quality factor;Finite element method

Acknowledgement

Supported by : University of Engineering and Technology Taxila

References

  1. K. Cook-Chennault, N. Thambi and A. Sastry, Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials and Structures, 2008. 17(4): p. 043001. https://doi.org/10.1088/0964-1726/17/4/043001
  2. A. Safari and E.K. Akdogan, Piezoelectric and acoustic materials for transducer applications. Springer Science & Business Media, 2008.
  3. J. Latalski, Modelling of macro fiber composite piezoelectric active elements in ABAQUS system. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2011 (4): p. 72-78.
  4. N. Paliwal, N. Mukhija and D. Bhatia, Design and optimization of high quality factor MEMS piezoelectric resonator with pseudo electrodes.in Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), 2015 4th International Conference on. 2015. IEEE.
  5. X. Chen, T. Yang. W. Wang and X. Yao, Vibration energy harvesting with a clamped piezoelectric circular diaphragm. Ceramics International, 2012. 38: p. S271-S274. https://doi.org/10.1016/j.ceramint.2011.04.099
  6. W. L. Bond, and W. P. Mason, Piezoelectric vibrator. 1947, Google Patents.
  7. E. Hasler, L. Stein, and G. Harbauer, Implantable physiological power supply with PVDF film. Ferroelectrics, 1984. 60(1): p. 277-282. https://doi.org/10.1080/00150198408017528
  8. V. H. Schmidt, Piezoelectric energy conversion in windmills. in Ultrasonics Symposium, 1992. Proceedings., IEEE 1992. 1992. IEEE.
  9. J. F. Antaki, G. E. Bertocci, E. C. Green, A. Nadeem, T. Rintoul, R. L. Kormos and B. P. Griffith, A gaitpowered autologous battery charging system for artificial organs. ASAIO journal, 1995. 41(3): p. M588-M595. https://doi.org/10.1097/00002480-199507000-00079
  10. A. Erturk, WGR Vieira, C. De Marqui Jr. and DJ Inman, On the energy harvesting potential of piezoaeroelastic systems. Applied Physics Letters, 2010. 96(18): p. 184103. https://doi.org/10.1063/1.3427405
  11. Z. Xiao, T. qing Yang, Y. Dong and X. cai Wang, Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Applied Physics Letters, 2014. 104(22): p. 223904. https://doi.org/10.1063/1.4878537
  12. F. Montero de Espinosa, J. San Emeterio and P. Sanz, Summary of the measurement methods of Qm for piezoelectric materials. Ferroelectrics, 1992. 128(1): p. 61-66. https://doi.org/10.1080/00150199208015067
  13. G. Liu, S. Zhang, W. Jiang and W. Cao, Losses in ferroelectric materials. Materials Science and Engineering: R: Reports, 2015. 89: p. 1-48. https://doi.org/10.1016/j.mser.2015.01.002
  14. D. L. DeVoe, Piezoelectric thin film micromechanical beam resonators. Sensors and Actuators A: Physical, 2001. 88(3): p. 263-272. https://doi.org/10.1016/S0924-4247(00)00518-5
  15. G. Piazza, R. Abdolvand, G. K. Ho and F. Ayazi, Voltage-tunable piezoelectrically-transduced singlecrystal silicon micromechanical resonators. Sensors and Actuators A: Physical, 2004. 111(1): p. 71-78. https://doi.org/10.1016/j.sna.2003.10.021
  16. F. Qayyum, M. Shah, S. Manzoor and M. Abbas, Comparison of thermomechanical stresses produced in work rolls during hot and cold rolling of Cartridge Brass 1101. Materials Science and Technology, 2015. 31(3): p. 317-324. https://doi.org/10.1179/1743284714Y.0000000523
  17. F. Qayyum, M. Shah, O. Shakeel, F. Mukhtar, M. Salem and F. Rezai-Aria, Numerical simulation of thermal fatigue behavior in a cracked disc of AISI H- 11 tool steel. Engineering Failure Analysis, 2016. 62: p. 242-253. https://doi.org/10.1016/j.engfailanal.2016.01.015
  18. Z. Anjum, F. Qayyum, S. Khushnood, S. Ahmed and M. Shah, Prediction of non-propagating fretting fatigue cracks in Ti6Al4V sheet tested under pin-indovetail configuration: Experimentation and numerical simulation. Materials & Design, 2015. 87: p. 750-758. https://doi.org/10.1016/j.matdes.2015.08.070
  19. W. T. Chien, C. J. Yang and Y. T. Yen, Coupledfield analysis of piezoelectric beam actuator using FEM. Sensors and Actuators A: Physical, 2005. 118(1): p. 171-176. https://doi.org/10.1016/j.sna.2004.04.017
  20. K. Uchino, Y. Zhuang and S. O. URAL, Loss determination methodology for a piezoelectric ceramic: new phenomenological theory and experimental proposals. Journal of Advanced Dielectrics, 2011. 1(01): p. 17-31. https://doi.org/10.1142/S2010135X11000033
  21. R. A. Pasha and M. Z. Khan, Fatigue behavior of piezoelectric ceramic materials. Proceedings of second international conference on frontiers of advance engineering materials, 2006: p. 13-19.
  22. H. Shekhani and K. Uchino, Evaluation of the mechanical quality factor under high power conditions in piezoelectric ceramics from electrical power. Journal of the European Ceramic Society, 2015. 35(2): p. 541-544. https://doi.org/10.1016/j.jeurceramsoc.2014.08.038
  23. Z. Butt and R. A. Pasha, Effect of temperature and loading on output voltage of lead zirconate titanate (PZT-5A) piezoelectric energy harvester. in IOP Conference Series: Materials Science and Engineering. 2016. IOP Publishing.
  24. Z. Butt, R. A. Pasha, F. Qayyum, Z. Anjum, N. Ahmad and H. Elahi, Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications. Journal of Mechanical Science and Technology, 2016. 30(8): p. 3553-3558. https://doi.org/10.1007/s12206-016-0715-3

Cited by

  1. Effect of various surface preparation techniques on the delamination properties of vacuum infused Carbon fiber reinforced aluminum laminates (CARALL): Experimentation and numerical simulation vol.31, pp.11, 2017, https://doi.org/10.1007/s12206-017-1019-y
  2. Battery voltage-balancing applications of disk-type radial mode Pb(Zr ∙ Ti)O3 ceramic resonator vol.56, pp.10S, 2017, https://doi.org/10.7567/JJAP.56.10PD03
  3. 316 L 热浸镀铝不锈钢的研制与表征 vol.25, pp.11, 2018, https://doi.org/10.1007/s11771-018-3937-y
  4. Deflection of coupled elasticity–electrostatic bimorph PVDF material: theoretical, FEM and experimental verification pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4182-x
  5. Prediction of crack tip plasticity induced due to variation in solidification rate of weld pool and its effect on fatigue crack propagation rate (FCPR) vol.32, pp.8, 2018, https://doi.org/10.1007/s12206-018-0714-7