DOI QR코드

DOI QR Code

Theoretical Studies of the Electrical Discharge Characteristics of Sulfur Hexafluoride

  • Received : 2016.01.04
  • Accepted : 2016.05.21
  • Published : 2017.01.02

Abstract

This paper contains results of the theoretical studies of the electrical breakdown properties in sulfur hexafluoride. Since the strong interaction of high-energy electrons with the polyatomic sulfur hexafluoride molecule causes their rapid deceleration to the lower energy of electron capture and dissociative attachment, the breakdown is only possible at relatively high field strengths. From the breakdown voltage curves, the effective yields that characterize secondary electron productions have been estimated. Values of the effective yields are found to be more consistent if they are derived from the experimentally determined values of the ionization coefficient and the breakdown voltages. In addition, simulations were performed using an one-dimensional Particle-in-cell/Monte Carlo collision code. The obtained simulation results agree well with the available experimental data with an error margin of less than 10% over a wide range of pressures and the gap sizes. The differences between measurements and calculations can be attributed to the differences between simulation and experimental conditions. Simulation results are also compared with the theoretical predictions obtained by using expression that describes linear dependence of the breakdown voltage in sulfur hexafluoride on the pressure and the gap size product.

Acknowledgement

Supported by : Ministry of Education and Science

References

  1. W. R. Wilson, A. L. Streater and E. J. Tuohy, "Application of volume theory of dielectric strength to oil circuit breakers," AIEE Transactions, vol. 74-III, pp. 677-684, 1955.
  2. G. Camilli, "Application of volume theory of dielectric strength to oil circuit breakers," Proc. IEE,
  3. G. Christophorou, J. K. Olthoff and J. van Brunt, "Sulfur hexafluoride and the Electric Power Industry," IEEE Electrical Insulation Magazine, vol.13, pp. 20-24, 1997.
  4. C. T. Dervos and P. Vassilou, Sulfur Hexafluoride, Global Environmental Effects and Toxic Byproduct Formation, Taylor and Francis, 2012.
  5. K. R. Lassey, "On the importance of background sampling in applications of the $SF_6$ tracer technique to determine ruminant methane emissions", Animal Feed Science and Technology, vol.180, pp. 115-120, 2013. https://doi.org/10.1016/j.anifeedsci.2012.11.012
  6. H-D Ngo, A. Hiess, V. Seidemann, D. Studzinski, M. Lange, J. Leib, D. Shariff, H. Ashraf, M. Steel, L. Atabo and J. Reast, "Plasma Etching of Tapered Features in Silicon for MEMS and Wafer Level Packaging Applications", Journal of Physics: Conference Series., vol. 34, pp. 271-276, 2006. https://doi.org/10.1088/1742-6596/34/1/045
  7. B. Radjenovic and M. Radmilovic-Radjenovic, „Top down nano technologies in surface modification of materials", Central European Journal of Physic, vol. 9, pp. 265-275, 2011. https://doi.org/10.2478/s11532-011-0004-z
  8. C. Wang, J. Ouyang, K. D. Ye, J. J. Xu, H. Y. Chen and X. H. Xia, "Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip", Lab Chip, vol. 12, pp. 2664-2671, 2012. https://doi.org/10.1039/c2lc20977b
  9. C. Duan, W. Wang and Q. Xie, "Review article: fabrication of nanofluidic devices," Biomicrofluidics, vol. 7, pp. 026501, 2013. https://doi.org/10.1063/1.4794973
  10. C. N. Works, T. W. Dakin, and R. W. Rodgers, "Electric Breakdown of $SF_6$ at High Pressures up to the Liquid State," Ann. Rep. Conf. on Elec. Insul. vol. 69, 1962.
  11. M. Bortnik and A. A. Panov, "Breakdown Characteristic and Ionization and Attachment Coefficients in$CF_4,\;C_2F_6,\;and\;SF_6$", Sov. Phys. Tech. Phys., vol. 16, pp. 571-575, 1971.
  12. N.H. Malik, "DC Voltage Breakdown of $SF_6$-Air and $SF_6-CO_2$ Mixtures in Rod-Plane Gaps," IEEE Transactions on Dielectrics and Electrical Insulation, vol. EI-18, pp. 629-636, 1983. https://doi.org/10.1109/TEI.1983.298701
  13. T.D. Nguyen, H.R. Hiziroglu and M. S. Dincer, "Breakdown Voltages in $SF_6$ + Argon Mixtures", IEEE Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, vol. 2, pp. 598-601, 1996
  14. D. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo,"Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface in $SF_6$ gas.", IEEE Transactions on Dielectrics and Electrical Insulation, vol. 16, pp. 1150-1157, 2009. https://doi.org/10.1109/TDEI.2009.5211869
  15. J. Han, R. S. Gorur and P. Hansen, "Breakdown voltage of compressed $SF_6$ at very low frequency/low frequency (VLF/LF)" Eur. Trans. Electr. Power., vol. 22, pp. 216-225, 20112.
  16. S. Sasano and M. Cho, "Particle simulation of negative corona discharge in $SF_6$ gas," Electrical Engineering in Japan, vol.141, pp. 1-8, 2002.
  17. X. Liu and D. Xiao, "Monte Carlo Simulation of Electron Swarm Parameters in the $SF_6/CF_4$ Gas Mixtures," Jpn. J. Appl. Phys., vol. 46, pp. 1663-1667, 2007. https://doi.org/10.1143/JJAP.46.1663
  18. R. Knizikevicius, "Simulations of Si and $S_iO_2$ Etching in $SF_6$+$O_2$ Plasma", ACTA PHYSICA POLONICA A, vol. 117, pp. 478-483, 2010. https://doi.org/10.12693/APhysPolA.117.478
  19. A. Settaouti, "Monte Carlo simulation of positive corona discharge in $SF_6$", International Journal of Electrical Power & Energy Systems, vol. 49, pp. 349-353, 2013. https://doi.org/10.1016/j.ijepes.2013.02.001
  20. N. H. Malik and A. H. Qureshi, "Breakdown Mechanisms in Sulfur Hexafluoride", IEEE Trans. EI., vol. 13, pp. 135-142, 1978.
  21. N. H, Malik and A. H. Qureshi, "A Review of Electrical Breakdown in Mixtures of $SF_6$ and Other Gases", IEEE Trans. Electr. Insul., vol. 14, pp. 1-13, 1979.
  22. E. Husain and R. S. Nema, "Analysis of Paschen curves for air, $N_2& and $SF_6$ using the Townsend breakdown equation", IEEE Transactions on Electrical Insulation EI, vol.17, pp. 350-353, 1982.
  23. M. S. Bhalla and J. D. Craggs, "Ionization and Attachment Coefficient in $SF_6$ in Uniform Fields", Proc. Phys. Soc., vol. 80, pp. 151., 1962 https://doi.org/10.1088/0370-1328/80/1/318
  24. J. Dutton, F. M. Harris, and C. J. Jones, "Ionization, Attachment, and Breakdown in SF6," Nature vol. 227, pp. 702, 1970. https://doi.org/10.1038/227702a0
  25. H. S. Uhm, Y. S. Byeon, K. B. Song, E. H. Choi, H-Y Ryu and J. Lee, "Analytical investigation of electrical breakdown properties in a nitrogen-$SF_6$ mixture gas", Physics of Plasmas, vol. 17, pp. 113510, 2010. https://doi.org/10.1063/1.3501022
  26. T. Nitta and Y. Shibuya, "Electrical Breakdown of Long Gap in Sulfur Hexafluoride", IEEE Trans. PAS, vol. 90, pp. 1065-1071, 1971.
  27. T. W. Dakin, G. Luxa, G. Oppermann, J. Vigreux, G. Wind, H. Winkelnkemper, "Breakdown of gases in uniform fields - Paschen's curves for air, $N_2$ and $SF_6$," Electra, vol. 32, pp. 61-82, 1974.
  28. J.P. Verboncoeur, A.B. Langdon and N.T. Gladd, "An object-oriented electromagnetic PIC code", Comp. Phys. Comm., vol. 87, pp. 199-211, 1995. https://doi.org/10.1016/0010-4655(94)00173-Y
  29. J P Verboncoeur, "Particle simulation of plasmas: review and advances," Plasma Phys. Control. Fusion, vol. 47, pp. A231-A260, 2005. https://doi.org/10.1088/0741-3335/47/5A/017
  30. M. Radmilovic-Radjenovic, B. Radjenovic, M. Klas, A. Bojarov and S. Matejcik, "The Breakdown Mechanisms in Electrical Discharges: the Role of the Field Emission Effect in Direct Current Discharges in Microgaps," Acta Physica Slovaca vol. 63, pp. 105-205, 2013.
  31. A. V. Phelps and R. J. Van Brunt, "Electron-transport, ionization, attachment, and dissociation coefficients in SF6 and its mixtures," J. Appl. Phys. vol. 64, pp. 4269, 1988. https://doi.org/10.1063/1.341300
  32. PHELPS database, http://www.lxcat.laplace.univtlse.fr
  33. H. C. Kim, F. Iza, S. S. Yang, M. Radmilovic-Radjenovic and J. K. Lee, "Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects", J. Phys. D: Appl. Phys. Vol. 38, pp. R283-R301, 2005. https://doi.org/10.1088/0022-3727/38/19/R01
  34. T. W. Dakin, G. Luxa, G. Oppermann, J. Vigreux, G. Wind, H. Winkelnkemper, "Breakdown of gases in uniform fields - Paschen's curves for air, $N_2$ and $SF_6$," Electra, vol. 32, pp. 61-82, 1974.
  35. W. Khechen and J. R. Laghari. "Breakdown Studies of $SF_6$/Argon Gas Mixtures", IEEE Transactions on Electrical Insulation, vol. 24, pp. 1141-1146, 1986
  36. J. W. Gibson u. E. F. Miller, "The Electric Strength of Sulfurhexafluoride at Radio Frequencies", J. Elektrochem. Soc., vol. 100, pp. 265-271, 1953.
  37. A. Hartig, "Unvollkommener und vollkommener Durchschlag in SF6", Beihefte der Elektrotech. Z, vol. 3, pp. 142, 1996.
  38. M. Klas, S. Matejcik, B. Radjenovic, P. Papp and M. Radmilovic-Radjenovic, "The breakdown voltage characteristics, the effective secondary emission coefficient and the ionization coefficient of the argonbased mixtures:, Nuclear Instruments and Methods in Physics Research B, vol. 279, pp. 100-102, 2012. https://doi.org/10.1016/j.nimb.2011.10.018
  39. M. Klas, M. Radmilovic-Radjenovic, B. Radjenovic, M. Stano and S. Matejcik, "Transport parameters and breakdown voltage characteristics of the dry air and its constituents", Nuclear Instruments and Methods in Physics Research B, vol. 279, pp. 96-99.
  40. D. Maric, M. Savic, J. Sivos, N. Skoro, M. Radmilovic-Radjenovic, G. Malovic, Z. Lj. Petrovic. "Gas breakdown and secondary electron yields", Eur. Phys. J. D, vol. 68, pp. 155, 2014. https://doi.org/10.1140/epjd/e2014-50090-x
  41. A. Venkattraman and A.A. Alexeenko, "Scaling law for direct current field emission-driven microscale gas breakdown",Phys. Plasmas, vol. 19, pp. 123515, 2012 https://doi.org/10.1063/1.4773399
  42. S.O. Macheret, M. N. Shneider and R.C. Murray, "Ionization in Strong Electric Fields and Dynamics of Nanosecond-Pulse Plasmas," Phys. Plasmas, vol. 55, pp. 023502, 2006.
  43. M. Radmilovic-Radjenovic, B. Radjenovic, M. Klas and S. Matejcik, "A semi-empirical expression for the first Townsend coefficient in strong electric fields", EPL, vol.108, pp. 65001, 2014. https://doi.org/10.1209/0295-5075/108/65001