DOI QR코드

DOI QR Code

Impacts of Land Cover Change of Tidal Flats on Local Meteorology in Gyeonggi Bay, West Sea of Korea

경기만 갯벌의 지표면 토지피복 변화가 국지기상에 미치는 영향 평가

  • An, Hye Yeon (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Yoo-Keun (Department of Atmospheric Sciences, Pusan National University) ;
  • Jeong, Ju-Hee (Department of Atmospheric Sciences, Pusan National University)
  • 안혜연 (부산대학교 지구환경시스템학부) ;
  • 김유근 (부산대학교 대기환경과학과) ;
  • 정주희 (부산대학교 대기환경과학과)
  • Received : 2017.08.07
  • Accepted : 2017.11.26
  • Published : 2017.12.31

Abstract

The impact of land cover changed by tidal flats on local meteorology in Gyeonggi Bay was quantitatively evaluated based on a numerical modeling approach during 18 days (21 June to 9 July 2013). The analysis was carried out using three sets of simulation scenarios and the land cover of tidal flats for each simulation was applied as follows: (1) the herbaceous wetland representing coastal wetlands (i.e., EXP-BASE case), (2) the barren or sparsely vegetated representing low tide (i.e., EXP-LOW case), (3) the water bodies representing high tide (i.e., EXP-HIGH case). The area of tidal flats was calculated as about $552km^2$ (the ratio of 4.7% for analysis domain). During the daytime, the change (e.g. wetlands to water) of land cover flooded by high tide indicated the decrease of temperature (average $3.3^{\circ}C$) and the increase of humidity (average 13%) and wind speed (maximum $2.9m\;s^{-1}$). The changes (e.g. wetlands to barren or sparsely vegetated) of land cover induced by low tide were smaller than those by high tide. On the other hands, the effects of changed land cover at night were not apparent both high tide and low tide. Also, during the high tide, the meteorological change in tidal flats affected the metropolitan area (about 40 km from the tidal flat).

Acknowledgement

Supported by : 한국연구재단

References

  1. Alexander, C. R., C. A. Nittrouer, D. J. Demaster, Y.-A. Park, and S.-C. Park, 1991: Macrotidal mudflats of the southwestern Korean coast: A model for interpretation of intertidal deposits. J. Sediment. Res., 61, 805-824, doi:10.1306/D42677DA-2B26-11D7-8648000102C1865D. https://doi.org/10.1306/D42677DA-2B26-11D7-8648000102C1865D
  2. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587-604. https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2
  3. Chen, C., J. Qi, C. Li, R. C. Beardsley, H. Lin, R. Walker, and K. Gates, 2008: Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: An application of FVCOM. J. Geophys. Res., 113, C07052, doi:10.1029/JC004328.
  4. Han, Z., and F. Peng, 2012: Soil moisture quantitative study of the Nanhui tidal flat in the Yangtze River Estuary by using ENVISAT ASAR data. 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, 2188-2192, doi:10.1109/ICSAI.2012.6223485. https://doi.org/10.1109/ICSAI.2012.6223485
  5. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-class Microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  6. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of the entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  7. Jung, J.-A., 2016: A Numerical Study using Coupled Model on Cold Water Region and Fog Occurrence over the Southwest Coast of the Korean Peninsula. Master Dissertation, Pusan National University, 68 pp (in Korean with English abstract).
  8. Jung, W.-S., and W.-G. Do, 2012: An analysis of the temperature change effects of restoring urban streams in Busan area. J. Env. Sci. Intern., 21, 939-951, doi: 10.5322/JES.2012.21.8.939 (in Korean with English abstract). https://doi.org/10.5322/JES.2012.21.8.939
  9. Kain, J. S., 2010: The Kain-Fristch convective parameterization: An update. J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  10. Kim, T.-W., Y.-K. Cho, and E. P. Dever, 2007: An evaluation of the thermal properties and albedo of a macrotidal flat. J. Geophys. Res., 112, C12009, doi:10.1029/2006JC004015. https://doi.org/10.1029/2006JC004015
  11. Koh, C.-H., 1997: Korean meta-tidal environments and tidal power projects: Korean tidal flats-biology, ecology and land uses by reclamations and other feasibilities. La Houille Blanche, 3, 66-78, doi:10.1051/lhb/1997018. https://doi.org/10.1051/lhb/1997018
  12. Korea Meteorological Administration, 2013: Annual climatological report. 11-1360000-000011-10, 438 pp.
  13. Lam, J. S. L., A. K. H. Lau, and J. C. H. Fung, 2006: Application of refined land-use categories for high resolution mesoscale atmospheric modeling. Bound.-Layer Meteor., 119, 263-288. https://doi.org/10.1007/s10546-005-9027-3
  14. Lee, Y.-H., K.-D. Ahn, and Y. H. Lee, 2016: Parametrization of the tidal effect for use in the Noah land-surface model: Development and validation. Bound.-Layer Meteor., 161, 561-574, doi:10.1007/s10546-016-0178-1. https://doi.org/10.1007/s10546-016-0178-1
  15. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612, doi:10.1175/2009MWR2968.1. https://doi.org/10.1175/2009MWR2968.1
  16. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validate correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  17. Murray, N. J., S. R. Phinn, R. S. Clemens, C. M. Roelfsema, and R. A. Fuller, 2012: Continental scale mapping of tidal flats across East Asia using the Landsat archive. Remote Sens., 4, 3417-3426, doi:10.3390/rs4113417. https://doi.org/10.3390/rs4113417
  18. National Institute of Environmental Research, 2014: Studies on the optimization method for improving the accuracy of air quality modeling. NIER-SP2013-210, 280 pp.
  19. Park, S. K., and J.-H. Kim, 2011: A study on changes in local meteorological fields due to a change in land use in the lake Shihwa region using synthetic land cover data and high-resolution mesoscale model. Atmosphere, 21, 405-414 (in Korean with English abstract).
  20. Park, S.-E., W. M. Moon, and D.-J. Kim, 2009: Estimation of surface roughness parameter in intertidal mudflat using airborne polarimetric SAR data. IEEE T. Geosci. Remote, 47, 1022-1031. https://doi.org/10.1109/TGRS.2008.2008908
  21. Ryu, J.-H., J.-S. Won, and K. D. Min, 2002: Waterline extraction from Landsat TM data in a tidal flat. A case study in Gomso Bay, Korea. Remote Sens. Environ., 83, 442-456. https://doi.org/10.1016/S0034-4257(02)00059-7
  22. Ryu, J.-H., J.-K. Choi, and Y.-K. Lee, 2014: Potential of remote sensing in management of tidal flats: A case study of thematic mapping in the Korean tidal flats. Ocean Coast. Manage., 102, 458-470, doi:10.1016/j.ocecoaman.2014.03.003. https://doi.org/10.1016/j.ocecoaman.2014.03.003
  23. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR/TN-475+STR, National Center for Atmospheric Research, 113 pp.
  24. Warner, J. C., Z. Defne, K. Haas, and H. G. Arango, 2013: A wetting and drying scheme for ROMS. Comput. Geosci.-UK, 58, 54-61, doi:10.1016/j.cageo.2013.05.004. https://doi.org/10.1016/j.cageo.2013.05.004
  25. Zhao, B., H. Guo, Y. Yan, Q. Wang, and B. Li, 2008: A simple waterline approach for tidelands using multitemporal satellite images: A case study in the Yangtze Delta. Estuar. Coast. Shelf S., 77, 134-142, doi:10.1016/j.ecss.2007.09.022. https://doi.org/10.1016/j.ecss.2007.09.022