로지스틱 임의선형 혼합모형의 최대우도 추정법

Maximum likelihood estimation of Logistic random effects model

  • 김민아 (덕성여자대학교 정보통계학과) ;
  • 경민정 (덕성여자대학교 정보통계학과)
  • Kim, Minah (Department of Statistics, Duksung Women's University) ;
  • Kyung, Minjung (Department of Statistics, Duksung Women's University)
  • 투고 : 2017.10.10
  • 심사 : 2017.11.30
  • 발행 : 2017.12.31


관측되지 않는 효과 또는 고정효과로 설명할 수 없는 분산 구조가 포함되어 정확한 모수 추정이 어려운 경우 체계적인 분석을 위해 일반화 선형 모형은 임의효과가 포함된 일반화 선형 혼합 모형으로 확장되었다. 본 연구에서는 일반화 선형 모형 중에서도 이분적인 반응변수를 다루는 로지스틱 회귀모형에 임의효과를 포함한 최대 우도 추정 방법을 설명한다. 그중에서도 라플라스 근사법, 가우스-에르미트 구적법, 적응 가우스-에르미트 구적법 그리고 유사가능도 우도에 대한 최대우도 추정법을 자세히 알아본다. 또한 제안한 방법을 사용하여 한국 복지 패널 데이터에서 정신건강과 생활만족도가 자원봉사활동에 미치는 영향에 대해 분석한다.

A generalized linear mixed model is an extension of a generalized linear model that allows random effect as well as provides flexibility in developing a suitable model when observations are correlated or when there are other underlying phenomena that contribute to resulting variability. We describe maximum likelihood estimation methods for logistic regression models that include random effects - the Laplace approximation, Gauss-Hermite quadrature, adaptive Gauss-Hermite quadrature, and pseudo-likelihood. Applications are provided with social science problems by analyzing the effect of mental health and life satisfaction on volunteer activities from Korean welfare panel data; in addition, we observe that the inclusion of random effects in the model leads to improved analyses with more reasonable inferences.



연구 과제 주관 기관 : 덕성여자대학교


  1. Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, Dover, New York.
  2. Agresti, A. (1990). Categorical Data Analysis (1st ed), Wiley, New York.
  3. Agresti, A. (2002). Categorical Data Analysis (2nd ed), Wiley, New York.
  4. Bates, D. and Maechler, M. (2009). Package 'lme4': linear mixed-effects models using S4 classes (Version 0.999375-32),
  5. Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer, New York.
  6. Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., and White, J. S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution, Trends in Ecology & Evolution, 24, 127-135.
  7. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25.
  8. Breslow, N. E. and Lin, X. (1995). Bias correction in generalised linear mixed models with a single component of dispersion, Biometrika, 82, 81-91.
  9. Buonaccorsi, J. P. (1996). Measurement error in the response in the general linear model, Journal of the American Statistical Association, 91, 633-642.
  10. Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling based on Generalized Linear Models (2nd ed), Springer, New York.
  11. Hedeker, D. and Gibbons, R. D. (2006). Longitudinal Data Analysis, John Wiley & Sons, New York.
  12. Kim, Y., Choi, Y. K., and Emery, S. (2013). Logistic regression with multiple random effects: a simulation study of estimation methods and statistical packages, The American Statistician, 67, 171-182.
  13. Laplace, P. S. (1986). Memoir on the probability of the causes of events, Statistical Science, 1, 364-378.
  14. Lesaffre, E. and Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random effects model: an example, Journal of the Royal Statistical Society, Series C, 50, 325-335.
  15. Li, B., Lingsma, H. F., Steyerberg, E. W., and Lesaffre, E. (2011). Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes, BMC Medical Research Methodology, 11, 77.
  16. Liu, Q. and Pierce, D. A. (1994). A note on Gauss-Hermite quadrature, Biometrika, 81, 624-629.
  17. McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models (2nd ed), Chapman and Hall/CRC.
  18. McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear, and Mixed Models, Wiley, New York.
  19. Nelder, J. A. and Wedderburn, R. W. M. (1972). General linearized models, Journal of the Royal Statistical Society. Series A, 135, 370-384.
  20. Pearl, R. and Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. In Proceedings of the National Academy of Sciences, 6, 275-288.
  21. Pearl, R., Reed, L. J., and Kish, J. F. (1940). The logistic curve and the census count of 1940, Science, 92, 486-488.
  22. SAS Institute (2008). Sas/Stat 9.2 User's Guide: The Glimmix Procedure, SAS Pub.
  23. SAS Institute (2009). Sas/Stat 9.2 User's Guide: The Glimmix Procedure, SAS Pub.
  24. Schall, R. (1991). Estimation in generalized linear models with random effects, Biometrika, 78, 719-727.
  25. Schultz, H. (1930). The standard error of a forecast from a curve, Journal of the American Statistical Association, 25, 139-185.
  26. Solomon, P. J. and Cox, D. R. (1992). Nonlinear component of variance models, Biometrika, 79, 1-11.
  27. StataCorp, L. P. (2013). Stata Multilevel Mixed-Effects Reference Manual, StataCorp LP, Texas.
  28. Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement, correspondance Mathematique et Physique Publiee Par a. Quetelet, 10, 113-121.
  29. Verhulst, P. F. (1845). Recherches Mathйmatiques sur La Loi D'Accroissement de la Population, Nouveaux Mйmoires de l'Acadйmie Royale des Sciences et Belles-Lettres de Bruxelles, 18, 1-45.
  30. Wang, N., Lin, X., Gutierrez, R. G., and Carroll, R. J. (1998). Bias analysis and SIMEX approach in generalized linear mixed measurement error models, Journal of the American Statistical Association, 93, 249-261.
  31. Wolfinger, R. (1993). Laplace's approximation for nonlinear mixed models, Biometrika, 80, 791-795.
  32. Wolfinger, R. and O'Connell, M. (1993). Generalized linear mixed models a pseudo-likelihood approach, Journal of statistical Computation and Simulation, 48, 233-243.