Iron Homeostasis Controls Myeloid Blood Cell Differentiation in Drosophila

  • Yoon, Sunggyu (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Cho, Bumsik (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Shin, Mingyu (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Koranteng, Ferdinand (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Cha, Nuri (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Shim, Jiwon (Department of Life Sciences, College of Natural Science, Hanyang University)
  • Received : 2017.11.06
  • Accepted : 2017.11.12
  • Published : 2017.12.31


Iron is an essential divalent ion for aerobic life. Life has evolved to maintain iron homeostasis for normal cellular and physiological functions and therefore imbalances in iron levels exert a wide range of consequences. Responses to iron dysregulation in blood development, however, remain elusive. Here, we found that iron homeostasis is critical for differentiation of Drosophila blood cells in the larval hematopoietic organ, called the lymph gland. Supplementation of an iron chelator, bathophenanthroline disulfate (BPS) results in an excessive differentiation of the crystal cell in the lymph gland. This phenotype is recapitulated by loss of Fer1HCH in the intestine, indicating that reduced levels of systemic iron enhances crystal cell differentiation. Detailed analysis of Fer1HCH-tagged-GFP revealed that Fer1HCH is also expressed in the hematopoietic systems. Lastly, blocking Fer1HCH expression in the mature blood cells showed marked increase in the blood differentiation of both crystal cells and plasmatocytes. Thus, our work suggests a relevance of systemic and local iron homeostasis in blood differentiation, prompting further investigation of molecular mechanisms underlying iron regulation and cell fate determination in the hematopoietic system.


Supported by : National Research Foundation (NRF), Hanyang University


  1. Agaisse, H., and Perrimon, N. (2004). The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72-82.
  2. Benmimoun, B., Polesello, C., Waltzer, L., and Haenlin, M. (2012). Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717.
  3. Brownlie, J.C., Cass, B.N., Riegler, M., Witsenburg, J.J., Iturbe-Ormaetxe, I., McGraw, E.A., and O'Neill, S.L. (2009). Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368.
  4. Cronin, S.J., Nehme, N.T., Limmer, S., Liegeois, S., Pospisilik, J.A., Schramek, D., Leibbrandt, A., Simoes Rde, M., Gruber, S., Puc, U., et al. (2009). Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325, 340-343.
  5. De Domenico, I., McVey Ward, D., and Kaplan, J. (2008). Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol. 9, 72-81.
  6. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072.
  7. Dixon, S.J., and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17.
  8. Dragojlovic-Munther, M., and Martinez-Agosto, J.A. (2012). Multifaceted roles of PTEN and TSC orchestrate growth and differentiation of Drosophila blood progenitors. Development 139, 3752-3763.
  9. Drakesmith, H., and Prentice, A.M. (2012). Hepcidin and the ironinfection axis. Science 338, 768-772.
  10. Evans, C.J., Hartenstein, V., and Banerjee, U. (2003). Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673-690.
  11. Georgieva, T., Dunkov, B.C., Harizanova, N., Ralchev, K., and Law, J.H. (1999). Iron availability dramatically alters the distribution of ferritin subunit messages in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 96, 2716-2721.
  12. Georgieva, T., Dunkov, B.C., Dimov, S., Ralchev, K., and Law, J.H. (2002). Drosophila melanogaster ferritin: cDNA encoding a light chain homologue, temporal and tissue specific expression of both subunit types. Insect. Biochem. Mol. Biol. 32, 295-302.
  13. Gold, K.S., and Bruckner, K. (2015). Macrophages and cellular immunity in Drosophila melanogaster. Semin. Immunol. 27, 357-368.
  14. Gonzalez-Morales, N., Mendoza-Ortiz, M.A., Blowes, L.M., Missirlis, F., and Riesgo-Escovar, J.R. (2015). Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development. PLoS One 10, e0133499.
  15. Grigorian, M., Mandal, L., and Hartenstein, V. (2011). Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev. Genes Evol. 221, 121-131.
  16. Handke, B., Poernbacher, I., Goetze, S., Ahrens, C.H., Omasits, U., Marty, F., Simigdala, N., Meyer, I., Wollscheid, B., Brunner, E., et al. (2013). The hemolymph proteome of fed and starved Drosophila larvae. PLoS One 8, e67208.
  17. Jung, S.H., Evans, C.J., Uemura, C., and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533.
  18. Khadilkar, R.J., Ray, A., Chetan, D.R., Sinha, A.R., Magadi, S.S., Kulkarni, V., and Inamdar, M.S. (2017). Differential modulation of the cellular and humoral immune responses in Drosophila is mediated by the endosomal ARF1-Asrij axis. Sci. Rep. 7, 118.
  19. Kremer, N., Voronin, D., Charif, D., Mavingui, P., Mollereau, B., and Vavre, F. (2009). Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630.
  20. Lanot, R., Zachary, D., Holder, F., and Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257.
  21. Lebestky, T., Jung, S.H., and Banerjee, U. (2003). A Serrateexpressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348-353.
  22. Letourneau, M., Lapraz, F., Sharma, A., Vanzo, N., Waltzer, L., and Crozatier, M. (2016). Drosophila hematopoiesis under normal conditions and in response to immune stress. FEBS Lett. 590, 4034-4051.
  23. Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., and Banerjee, U. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324.
  24. Mandilaras, K., and Missirlis, F. (2012). Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics 4, 928-936.
  25. Mandilaras, K., Pathmanathan, T., and Missirlis, F. (2013). Iron absorption in Drosophila melanogaster. Nutrients 5, 1622-1647.
  26. Missirlis, F., Holmberg, S., Georgieva, T., Dunkov, B.C., Rouault, T.A., and Law, J.H. (2006). Characterization of mitochondrial ferritin in Drosophila. Proc. Natl. Acad. Sci. USA 103, 5893-5898.
  27. Missirlis, F., Kosmidis, S., Brody, T., Mavrakis, M., Holmberg, S., Odenwald, W.F., Skoulakis, E.M., and Rouault, T.A. (2007). Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics 177, 89-100.
  28. Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., and Banerjee, U. (2011). Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600.
  29. Morin-Poulard, I., Vincent, A., and Crozatier, M. (2013). The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT 2, e25700.
  30. Mukherjee, T., Kim, W.S., Mandal, L., and Banerjee, U. (2011). Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210-1213.
  31. Owusu-Ansah, E., and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541.
  32. Ponka, P. (1997). Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89, 1-25.
  33. Qiu, P., Pan, P.C., and Govind, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909-1920.
  34. Rizki, T.M., and Rizki, R.M. (1978). Larval adipose tissue of homoeotic bithorax mutants of Drosophila. Dev. Biol. 65, 476-482.
  35. Rizki, T.M., Rizki, R.M., and Bellotti, R.A. (1985). Genetics of a Drosophila phenoloxidase. Mol. Gen. Genet. 201, 7-13.
  36. Rouault, T.A., and Tong, W.H. (2005). Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol. 6, 345-351.
  37. Santambrogio, P., Levi, S., Cozzi, A., Corsi, B., and Arosio, P. (1996). Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem. J. 314 ( Pt 1), 139-144.
  38. Sheftel, A.D., Mason, A.B., and Ponka, P. (2012). The long history of iron in the Universe and in health and disease. Biochim. Biophys. Acta 1820, 161-187.
  39. Shim, J. (2015). Drosophila blood as a model system for stress sensing mechanisms. BMB Rep 48, 223-228.
  40. Shim, J., Mukherjee, T., and Banerjee, U. (2012). Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat. Cell Biol. 14, 394-400.
  41. Shim, J., Gururaja-Rao, S., and Banerjee, U. (2013). Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647-4656.
  42. Sinenko, S.A., Shim, J., and Banerjee, U. (2011). Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep. 13, 83-89.
  43. Sorrentino, R.P., Carton, Y., and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243, 65-80.
  44. Sulieman, M., Asleh, R., Cabantchik, Z.I., Breuer, W., Aronson, D., Suleiman, A., Miller-Lotan, R., Hammerman, H., and Levy, A.P. (2004). Serum chelatable redox-active iron is an independent predictor of mortality after myocardial infarction in individuals with diabetes. Diabetes Care 27, 2730-2732.
  45. Tang, X., and Zhou, B. (2013). Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 27, 288-298.
  46. Waltzer, L., Gobert, V., Osman, D., and Haenlin, M. (2010). Transcription factor interplay during Drosophila haematopoiesis. Int. J. Dev. Biol. 54, 1107-1115.
  47. Yoshiga, T., Georgieva, T., Dunkov, B.C., Harizanova, N., Ralchev, K., and Law, J.H. (1999). Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur. J. Biochem. 260, 414-420.
  48. Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., and Hultmark, D. (2004). A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101, 14192-14197.

Cited by

  1. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit pp.1559-0720, 2018,
  2. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism vol.9, pp.1664-042X, 2018,