DOI QR코드

DOI QR Code

Rnf152 Is Essential for NeuroD Expression and Delta-Notch Signaling in the Zebrafish Embryos

  • Kumar, Ajeet (Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University) ;
  • Huh, Tae-Lin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Choe, Joonho (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Rhee, Myungchull (Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University)
  • Received : 2017.09.18
  • Accepted : 2017.11.24
  • Published : 2017.12.31

Abstract

We report the biological functions of a zebrafish homologue of RING-finger protein 152 (rnf152) during embryogenesis. rnf152 was initially identified as a brain-enriched E3 ligase involved in early embryogenesis of zebrafish. Expression of rnf152 was ubiquitous in the brain at 24 hpf but restricted to the eyes, midbrain-hindbrain boundary (MHB), and rhombomeres at 48 hpf. Knockdown of rnf152 in zebrafish embryos caused defects in the eyes, MHB, and rhombomeres (r1-7) at 24 hpf. These defects in rnf152-deficient embryos were analyzed by whole-mount in situ hybridization (WISH) using neuroD, deltaD, notch1a, and notch3 probes. NeuroD expression was abolished in the marginal zone, outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL) of the eyes at 27 hpf. Furthermore, deltaD and notch1a expression was remarkably reduced in the ONL, INL, subpallium, tectum, cerebellum, and rhombomeres (r1-7) at 24 hpf, whereas notch3 expression was reduced in the tectum, cerebellum, and rhombomeres at 24 hpf. Finally, we confirmed that expression of Notch target genes, her4 and ascl1a, also decreased significantly in these areas at 24 hpf. Thus, we propose that Rnf152 is essential for development of the eyes, midbrain and hindbrain, and that Delta-Notch signaling is involved.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Anuppalle, M., Maddirevula, S., Huh, T.R., and Rhee, M. (2013). Ubiquitin proteasome system networks in the neurological disorder. Anim. Cells Syst. 17, 383-387. https://doi.org/10.1080/19768354.2013.855256
  2. Anuppalle, M., Maddirevula, S., Kumar, A., Huh, T.L., Choe, J., and Rhee, M. (2017). Notch and retinoic acid signaling are required for the spatiotemporal distribution of prune2 mRNA in the zebrafish embryonic development. Gene Exp. Patterns. 11, 23-24:45-51.
  3. Banote, R.K., Edling, M., Eliassen, F., Kettunen, P., Zetterberg, H., and Abramsson, A., (2016). ${\beta}$-Amyloid precursor protein-b is essential for Mauthner cell development in the zebrafish in a Notchdependent manner. Dev. Biol. 413, 26-38. https://doi.org/10.1016/j.ydbio.2016.03.012
  4. Chen, W.B., and Corliss, D.C. (2004). Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis. Dev. Biol. 267, 361-373. https://doi.org/10.1016/j.ydbio.2003.11.010
  5. Deng, L., Jiang, C., Chen, L., Jin, J., Wei, J., Zhao, L., Chen, M., Pan, W., Xu, Y., Chu, H., et al. (2015). The ubiquitination of RagA GTPase by RNF152 negatively regulates mTORC1 activation. Mol. Cell 58, 804-818. https://doi.org/10.1016/j.molcel.2015.03.033
  6. Garza-Lombo, C., and Gonsebat, M.E. (2016). Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front. Cell. Neurosci. 10, 157. doi: 10.3389/fncel.2016.00157. https://doi.org/10.3389/fncel.2016.00157
  7. Hartman, N.W., Lin, T.V., Zhang, L., Paquelet, G.E., Feliciano, D.M., and Bordey, A. (2013). mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell selfrenewal in vivo. Cell Rep. 5, 433-444. doi: 10.1016/j.celrep.2013.09.017. https://doi.org/10.1016/j.celrep.2013.09.017
  8. Hegde, A., Qiu, N.C., Qiu, X.H., Ho, S.H., Tay, K.Q., George, J., Ng, F.S., Govindarajan, K.R., Gong, Z.Y., Mathavan, S., et al. (2008). Genomewide expression analysis in zebrafish mind bomb alleles with pancreas defects of different severity identifies putative notch responsive genes. PLos One 3, e1479. https://doi.org/10.1371/journal.pone.0001479
  9. Hwang, J., Kim, H.S., Seok, J.W., Kim, J.D., Koun, S., Park, S.Y., Lee, J., Kim, K.S., Chang, K.T., Ryoo, Z.Y., et al. (2009). Transcriptome analysis of the zebrafish mind bomb mutant. Mol. Genet. Genomics 281, 77-85. https://doi.org/10.1007/s00438-008-0395-5
  10. Kang, K., Lee, D., Hong, S., Park, S.G., and Song, M.R., (2013). The E3 Ligase Mind Bomb-1 (Mib1) Modulates Delta-Notch Signaling to Control Neurogenesis and Gliogenesis in the Developing Spinal Cord. J. Biol. Chem. 288, 2580-2592. https://doi.org/10.1074/jbc.M112.398263
  11. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F., (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. https://doi.org/10.1002/aja.1002030302
  12. Kumar, S., Stecher, G., and Tamura, K., (2016). MEGA7: molecular evolutionary genetic analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  13. Lasky, J.L., and Wu, H., (2005). Notch signaling, brain development, and human disease. Pediatr. Res. 57, 104R-109R. https://doi.org/10.1203/01.PDR.0000159632.70510.3D
  14. Morreale, F.E., and Walden, H. (2016). Snapshot: types of ubiquitin ligase. Cell 165, 248-248.e1.
  15. Metzger, M.B., Pruneda, J.N., Klevit, R.E., and Weissman, A.M. (2014). RING-type E3 ligases: Master manipulators of E2 ubiquitinconjugating enzymes and ubiquitination. Biochim. Biophys. Acta. 1843, 47-60. https://doi.org/10.1016/j.bbamcr.2013.05.026
  16. Mumm, J.S., and Kopan, R. (2000). Notch signaling: from the outside in. Dev Biol 228, 151-165. https://doi.org/10.1006/dbio.2000.9960
  17. Ochocinska, M.J. and Hitchcock P.F. (2017). Dynamic expression of the basic helix-loop-helix transcription factor NeuroD in the rod and cone photoreceptor lineage in the retina of the embryonic and larval zebrafish. J. Comp. Neurol. 501, 1-12.
  18. Rauch, G.J., Lyons, D.A., Middendorf, I., Friedlander, B., Arana, N., Reyes, T., and Talbot, W.S. (2003). Submission and curation of gene expression data. ZFIN Direct Data Submission (http://zfin.org).
  19. Raymond, P.A., Barthel, L.K., Bernardos, R.L., and Perkowski, J.J. (2006). Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 6, 36 doi:10.1186/1471-213X-6-36. https://doi.org/10.1186/1471-213X-6-36
  20. Ro, H., Soun, K., Kim, E-J., and Rhee, M. (2004). Novel vector systems optimized for injecting in vitro-synthesized mRNA into zebrafish embryos. Mol. Cells 17, 373-376.
  21. Ro, H., Hui, T.L., and Rhee, M. (2015), Ubiquitin conjugation system for the body axes specification in vertebrates. Animal Cells Sys. 19, 87-95. https://doi.org/10.1080/19768354.2015.1026399
  22. Swatek, K.N., and Komander, D. (2016). Ubiquitin modifications. Cell Res. 26, 399-422. https://doi.org/10.1038/cr.2016.39
  23. Takke, C., Dornseifer, P., v. Weizsacker, E., and Campos-Ortega, J.A. (1999). her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signaling. Development 126, 1811-1821.
  24. Taylor, S.M., Alvarez-Delfin, K., Saade, C.J., Thomas, J.L., Thummel, R., Fadool, J.M., and Hitchcock P.F. (2015). The bHLH transcription factor NeuroD governs photoreceptor genesis and regeneration through Delta-Notch signaling. Invest. Ophthalmol. Vis. Sci. 56, 7496-7515. https://doi.org/10.1167/iovs.15-17616
  25. Thisse, B., and Thisse, C. (2004). Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission 2004. Available from: http://zfin.org).
  26. Thomas, J.L., Ochocinska, M.J., Hitchcock, P.F., and Thummel, R. (2012). Using the Tg(nrd:egfp)/albino Zebrafish Line to Characterize In Vivo Expression of neurod. PLoS One 7, e29128. doi:10.1371/journal.pone.0029128. https://doi.org/10.1371/journal.pone.0029128
  27. Wettstein, D.A., Turner D.L., and Kintner, C. (1997). The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693-702.
  28. Weizsacker, E.V. (1994). Molekulargenetische Untersuchungen an sechs Zebrafischgenen mit Homologie zur Enhancer of split-Genfamilie von Drosophila. Inaugural dissertation, Universitat zu Koln.
  29. Westerfield, M. (2000). The Zebrafish Book. A guide for the laboratory use of Zebrafish (Danio rerio), 4th ed., (University of Oregon Press, Eugene).
  30. Wright, J.G., Giudicelli F., Soza-Ried, C., Hanisch, A., Ariza-McNaughton, L., and Lewis, J. (2011). DeltaC and DeltaD interact as notch ligands in the zebrafish segmentation clock. Development 138, 2947-2956. https://doi.org/10.1242/dev.066654
  31. Yang, Y., Kim, A.H., Yamada, T., Wu, B., Bilimoria, P.M., Ikeuchi, Y., Iglesia, N.D.L., Shen, J., and Bonni, A., (2009). A Cdc20-APC Ubiquitin Signaling Pathway Regulates Presynaptic Differentiation. Science 326, 575-578. https://doi.org/10.1126/science.1177087
  32. Yang, Y., Kim, A.H., and Bonni, A., (2010). The Dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Curr. Opin. Neurobiol. 20, 92-99. https://doi.org/10.1016/j.conb.2009.12.004
  33. Yoo, K.W., Maddirevula, S., Kumar, A., Ro, H., Huh, T.L., and Rhee, M., (2017). Sinup is essential for the integrity of centrosomes and mitotic spindles in zebrafish embryos. Animal Cells Sys. 21, 93-99. https://doi.org/10.1080/19768354.2017.1308438
  34. Zhou, Z.D., Kumari, U., Xiao, Z.C., and Tan, E.K., (2010). Notch as a molecular switch in neural stem cells. IUBMB Life 62, 618-623. https://doi.org/10.1002/iub.362