DOI QR코드

DOI QR Code

The Replication Protein Cdc6 Suppresses Centrosome Over-Duplication in a Manner Independent of Its ATPase Activity

  • Kim, Gwang Su (Department of Biological Sciences, Seoul National University) ;
  • Lee, Inyoung (Department of Biological Sciences, Seoul National University) ;
  • Kim, Ji Hun (Department of Biological Sciences, Seoul National University) ;
  • Hwang, Deog Su (Department of Biological Sciences, Seoul National University)
  • Received : 2017.09.08
  • Accepted : 2017.11.07
  • Published : 2017.12.31

Abstract

The Cdc6 protein is essential for the initiation of chromosomal replication and functions as a licensing factor to maintain chromosome integrity. During the S and G2 phases of the cell cycle, Cdc6 has been found to inhibit the recruitment of pericentriolar material (PCM) proteins to the centrosome and to suppress centrosome over-duplication. In this report, we analyzed the correlation between these two functions of Cdc6 at the centrosome. Cdc6 depletion increased the population of cells showing centrosome over-duplication and premature centrosome separation; Cdc6 expression reversed these changes. Deletion and fusion experiments revealed that the 18 amino acid residues (197-214) of Cdc6, which were fused to the Cdc6-centrosomal localization signal, suppressed centrosome over-duplication and premature centrosome separation. Cdc6 mutant proteins that showed defective ATP binding or hydrolysis did not exhibit a significant difference in suppressing centrosome over-duplication, compared to the wild type protein. In contrast to the Cdc6-mediated inhibition of PCM protein recruitment to the centrosome, the independence of Cdc6 on its ATPase activity for suppressing centrosome over-duplication, along with the difference between the Cdc6 protein regions participating in the two functions, suggested that Cdc6 controls centrosome duplication in a manner independent of its recruitment of PCM proteins to the centrosome.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Chang, J., Cizmecioglu, O., Hoffmann, I., and Rhee, K. (2010). PLK2 phosphorylation is critical for CPAP function in procentriole formation during the centrosome cycle. EMBO J. 29, 2395-2406. https://doi.org/10.1038/emboj.2010.118
  2. Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339-350. https://doi.org/10.1016/S1534-5807(02)00258-7
  3. Dodson, H., Bourke, E., Jeffers, L.J., Vagnarelli, P., Sonoda, E., Takeda, S., Earnshaw, W.C., Merdes, A., and Morrison, C. (2004). Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J. 23, 3864-3873. https://doi.org/10.1038/sj.emboj.7600393
  4. Donovan, S., Harwood, J., Drury, L.S., and Diffley, J.F. (1997). Cdc6pdependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl. Acad. Sci. USA 94, 5611-5616. https://doi.org/10.1073/pnas.94.11.5611
  5. Ferguson, R.L., and Maller, J.L. (2008). Cyclin E-dependent localization of MCM5 regulates centrosome duplication. J. Cell Sci. 121, 3224-3232. https://doi.org/10.1242/jcs.034702
  6. Ferguson, R.L., Pascreau, G., and Maller, J.L. (2010). The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication. J. Cell Sci. 123, 2743-2749. https://doi.org/10.1242/jcs.073098
  7. Fernandez-Cid, A., Riera, A., Tognetti, S., Herrera, M.C., Samel, S., Evrin, C., Winkler, C., Gardenal, E., Uhle, S., and Speck, C. (2013). An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. Mol. Cell 50, 577-588. https://doi.org/10.1016/j.molcel.2013.03.026
  8. Franker, M.A., and Hoogenraad, C.C. (2013). Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis. J. Cell Sci. 126, 2319-2329. https://doi.org/10.1242/jcs.115030
  9. Hemerly, A.S., Prasanth, S.G., Siddiqui, K., and Stillman, B. (2009). Orc1 controls centriole and centrosome copy number in human cells. Science 323, 789-793. https://doi.org/10.1126/science.1166745
  10. Herbig, U., Marlar, C.A., and Fanning, E. (1999). The Cdc6 nucleotide-binding site regulates its activity in DNA replication in human cells. Mol. Biol. Cell 10, 2631-2645. https://doi.org/10.1091/mbc.10.8.2631
  11. Hook, S.S., Lin, J.J., and Dutta, A. (2007). Mechanisms to control rereplication and implications for cancer. Curr. Opin. Cell Biol. 19, 663-671 https://doi.org/10.1016/j.ceb.2007.10.007
  12. Hut, H.M., Lemstra, W., Blaauw, E.H., Van Cappellen, G.W., Kampinga, H.H., and Sibon, O.C. (2003). Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol. Biol. Cell 14, 1993-2004. https://doi.org/10.1091/mbc.E02-08-0510
  13. Jiang, W., Wells, N.J., and Hunter, T. (1999). Multistep regulation of DNA replication by Cdk phosphorylation of HsCdc6. Proc. Natl. Acad. Sci. USA 96, 6193-6198. https://doi.org/10.1073/pnas.96.11.6193
  14. Jungmichel, S., and Stucki, M. (2010). MDC1: The art of keeping things in focus. Chromosoma 119, 337-349. https://doi.org/10.1007/s00412-010-0266-9
  15. Kalfalah, F.M., Berg, E., Christensen, M.O., Linka, R.M., Dirks, W.G., Boege, F., and Mielke, C. (2015). Spatio-temporal regulation of the human licensing factor Cdc6 in replication and mitosis. Cell Cycle 14, 1704-1715. https://doi.org/10.1080/15384101.2014.1000182
  16. Kan, Q., Jinno, S., Yamamoto, H., Kobayashi, K., and Okayama, H. (2008). ATP-dependent activation of p21WAF1/CIP1-associated Cdk2 by Cdc6. Proc. Natl. Acad. Sci. USA 105, 4757-4762. https://doi.org/10.1073/pnas.0706392105
  17. Kim, G.S., Kang, J., Bang, S.W., and Hwang, D.S. (2015). Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner. Biochem. Biophys. Res. Commun. 456, 763-767. https://doi.org/10.1016/j.bbrc.2014.12.018
  18. Koonin, E.V. (1993). A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21, 2541-2547. https://doi.org/10.1093/nar/21.11.2541
  19. Kuriyama, R., Terada, Y., Lee, K.S., and Wang, C.L. (2007). Centrosome replication in hydroxyurea-arrested CHO cells expressing GFP-tagged centrin2. J. Cell Sci. 120, 2444-2453. https://doi.org/10.1242/jcs.008938
  20. Lacey, K.R., Jackson, P.K., and Stearns, T. (1999). Cyclin-dependent kinase control of centrosome duplication. Proc. Natl. Acad. Sci. USA 96, 2817-2822. https://doi.org/10.1073/pnas.96.6.2817
  21. Lau, E., Zhu, C., Abraham, R.T., and Jiang, W. (2006). The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep. 7, 425-430.
  22. Lee, I., Kim, G.S., Bae, J.S., Kim, J., Rhee, K., and Hwang, D.S. (2017). The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome. J. Biol. Chem. 292, 16267-16276. https://doi.org/10.1074/jbc.M116.763680
  23. Li, J., Williams, B.L., Haire, L.F., Goldberg, M., Wilker, E., Durocher, D., Yaffe, M.B., Jackson, S.P., and Smerdon, S.J. (2002). Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell 9, 1045-1054. https://doi.org/10.1016/S1097-2765(02)00527-0
  24. Loffler, H., Fechter, A., Liu, F.Y., Poppelreuther, S., and Kramer, A. (2013). DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites. Oncogene 32, 2963-2972. https://doi.org/10.1038/onc.2012.310
  25. Lu, F., Lan, R., Zhang, H., Jiang, Q., and Zhang, C. (2009). Geminin is partially localized to the centrosome and plays a role in proper centrosome duplication. Biol. Cell 101, 273-285. https://doi.org/10.1042/BC20080109
  26. Mahajan, A., Yuan, C., Lee, H., Chen, E.S., Wu, P.Y., and Tsai, M.D. (2008). Structure and function of the phosphothreonine-specific FHA domain. Sci. Signal. 1, re12.
  27. Mikule, K., Delaval, B., Kaldis, P., Jurcyzk, A., Hergert, P., and Doxsey, S. (2007). Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat. Cell Biol. 9, 160-170. https://doi.org/10.1038/ncb1529
  28. Moore, J.D. (2013). In the wrong place at the wrong time: does cyclin mislocalization drive oncogenic transformation? Nat. Rev. Cancer 13, 201-208. https://doi.org/10.1038/nrc3468
  29. Nam, H.J., and van Deursen, J.M. (2014). Cyclin B2 and p53 control proper timing of centrosome separation. Nat. Cell Biol. 16, 538-549.
  30. Nigg, E.A., and Stearns, T. (2011). The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154-1160. https://doi.org/10.1038/ncb2345
  31. Niimi, S., Arakawa-Takeuchi, S., Uranbileg, B., Park, J.H., Jinno, S., and Okayama, H. (2012). Cdc6 protein obstructs apoptosome assembly and consequent cell death by forming stable complexes with activated Apaf-1 molecules. J. Biol. Chem. 287, 18573-18583. https://doi.org/10.1074/jbc.M112.347690
  32. Paolinelli, R., Mendoza-Maldonado, R., Cereseto, A., and Giacca, M. (2009). Acetylation by GCN5 regulates CDC6 phosphorylation in the S phase of the cell cycle. Nat. Struct. Mol. Biol. 16, 412-420. https://doi.org/10.1038/nsmb.1583
  33. Perkins, G., and Diffley, J.F. (1998). Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol. Cell 2, 23-32. https://doi.org/10.1016/S1097-2765(00)80110-0
  34. Petersen, B.O., Lukas, J., Sorensen, C.S., Bartek, J., and Helin, K. (1999). Phosphorylation of mammalian CDC6 by cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396-410. https://doi.org/10.1093/emboj/18.2.396
  35. Petersen, B.O., Wagener, C., Marinoni, F., Kramer, E.R., Melixetian, M., Lazzerini Denchi, E., Gieffers, C., Matteucci, C., Peters, J.M., and Helin, K. (2000). Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1. Genes Dev. 14, 2330-2343. https://doi.org/10.1101/gad.832500
  36. Prasanth, S.G., Prasanth, K.V., Siddiqui, K., Spector, D.L., and Stillman, B. (2004). Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J. 23, 2651-2663. https://doi.org/10.1038/sj.emboj.7600255
  37. Randell, J.C., Bowers, J.L., Rodriguez, H.K., and Bell, S.P. (2006). Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol. Cell 21, 29-39. https://doi.org/10.1016/j.molcel.2005.11.023
  38. Schmidt, T.I., Kleylein-Sohn, J., Westendorf, J., Le Clech, M., Lavoie, S.B., Stierhof, Y.D., and Nigg, E.A. (2009). Control of centriole length by CPAP and CP110. Curr. Biol. 19, 1005-1011. https://doi.org/10.1016/j.cub.2009.05.016
  39. Stavridi, E.S., Huyen, Y., Loreto, I.R., Scolnick, D.M., Halazonetis, T.D., Pavletich, N.P., and Jeffrey, P.D. (2002). Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein and its complex with tungstate. Structure 10, 891-899. https://doi.org/10.1016/S0969-2126(02)00776-1
  40. Stearns, T., Evans, L., and Kirschner, M. (1991). Gamma-tubulin is a highly conserved component of the centrosome. Cell 65, 825-836. https://doi.org/10.1016/0092-8674(91)90390-K
  41. Stuermer, A., Hoehn, K., Faul, T., Auth, T., Brand, N., Kneissl, M., Putter, V., and Grummt, F. (2007). Mouse pre-replicative complex proteins colocalise and interact with the centrosome. Eur. J. Cell Biol. 86, 37-50. https://doi.org/10.1016/j.ejcb.2006.09.002
  42. Tanaka, T.U., and Desai, A. (2008). Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 20, 53-63. https://doi.org/10.1016/j.ceb.2007.11.005
  43. Tsou, M.F., and Stearns, T. (2006). Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947-951. https://doi.org/10.1038/nature04985
  44. Uranbileg, B., Yamamoto, H., Park, J.H., Mohanty, A.R., Arakawa-Takeuchi, S., Jinno, S., and Okayama, H. (2012). Cdc6 protein activates p27KIP1-bound Cdk2 protein only after the bound p27 protein undergoes C-terminal phosphorylation. J. Biol. Chem. 287, 6275-6283. https://doi.org/10.1074/jbc.M111.318295
  45. Vitre, B.D., and Cleveland, D.W. (2012). Centrosomes, chromosome instability (CIN) and aneuploidy. Curr. Opin. Cell Biol.24, 809-815. https://doi.org/10.1016/j.ceb.2012.10.006
  46. Watanabe, T., Noritake, J., and Kaibuchi, K. (2005). Regulation of microtubules in cell migration. Trends Cell Biol. 15, 76-83. https://doi.org/10.1016/j.tcb.2004.12.006
  47. Weinreich, M., Liang, C., and Stillman, B. (1999). The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc. Natl. Acad. Sci. USA 96, 441-446. https://doi.org/10.1073/pnas.96.2.441
  48. Westerholm-Parvinen, A., Vernos, I., and Serrano, L. (2000). Kinesin subfamily UNC104 contains a FHA domain: boundaries and physicochemical characterization. FEBS Lett. 486, 285-290. https://doi.org/10.1016/S0014-5793(00)02310-3
  49. Xu, X., Huang, S., Zhang, B., Huang, F., Chi, W., Fu, J., Wang, G., Li, S., Jiang, Q., and Zhang, C. (2017). DNA replication licensing factor Cdc6 and Plk4 kinase antagonistically regulate centrosome duplication via Sas-6. Nat. Commun. 8, 15164. https://doi.org/10.1038/ncomms15164
  50. Zhao, S., Renthal, W., and Lee, E.Y. (2002). Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res. 30, 4815-4822. https://doi.org/10.1093/nar/gkf612
  51. Zwerschke, W., Rottjakob, H.W., and Kuntzel, H. (1994). The Saccharomyces cerevisiae CDC6 gene is transcribed at late mitosis and encodes a ATP/GTPase controlling S phase initiation. J. Biol. Chem. 269, 23351-23356.