DOI QR코드

DOI QR Code

Topic Modeling-based Book Recommendations Considering Online Purchase Behavior

온라인 구매 행태를 고려한 토픽 모델링 기반 도서 추천

  • 정영진 (국민대학교 데이터사이언스학과) ;
  • 조윤호 (국민대학교 경영학부)
  • Received : 2017.11.13
  • Accepted : 2017.12.04
  • Published : 2017.12.31

Abstract

Thanks to the development of social media, general users become information and knowledge providers. But customers also feel difficulty to decide their purchases due to numerous information. Although recommender systems are trying to solve these information/knowledge overload problem, it may be asked whether they can honestly reflect customers' preferences. Especially, customers in book market consider contents of a book, recency, and price when they make a purchase. Therefore, in this study, we propose a methodology which can reflect these characteristics based on topic modeling and provide proper recommendations to customers in book market. Through experiments, our methodology shows higher performance than traditional collaborative filtering systems. Therefore, we expect that our book recommender system contributes the development of recommender systems studies and positively affect the customer satisfaction and management.

References

  1. 김경재, 안현철 2009. "개인화된 추천시스템을 위한 사용자-상품 매트릭스 축약기법," Journal of Information Technology Applications & Management (16:1), pp. 97-113.
  2. 김민정, 조윤호 2015. "빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법," 지능정보연구 (21:4), pp. 93-110. https://doi.org/10.13088/jiis.2015.21.4.093
  3. 박상현, 문현실, 김재경 2017. "토픽 모델링에 기반한 온라인 상품 평점 예측을 위한 온라인 사용 후기 분석," 한국IT서비스학회지 (16:3), pp. 113-125. https://doi.org/10.9716/KITS.2017.16.3.113
  4. 손지은, 김성범, 김현중, 조성준 2015. "추천 시스템 기법 연구동향 분석," 대한산업공학회지 (41:2), pp. 185-208. https://doi.org/10.7232/JKIIE.2015.41.2.185
  5. 양승준, 이보연, 김희웅 2016. "토픽모델링 기반 행복과 불행 이슈 분석 및 행복 증진 방안 연구," 지식경영연구 (17:2), pp. 165-185. https://doi.org/10.15813/kmr.2016.17.2.007
  6. 이세윤, 이선, 이정우 2006. "인터넷 콘텐츠 서비스 속성과 가격반응함수의 상관관계 분석," 한국IT서비스학회 2006년도 추계학술대회 논문집, pp. 80-85
  7. 임일 2015. R을 이용한 추천 시스템, 서울:카오스북.
  8. 전지은, 이충권 2014. "온라인 판매자들의 가격조정에 관한 연구," 한국전자거래학회지 (19:3), pp. 143-158 https://doi.org/10.7838/jsebs.2014.19.3.143
  9. 차윤정, 이지혜, 최지은, 김희웅 2015. "소셜미디어 토픽모델링을 통한 스마트폰 마케팅 전략 수립 지원," 지식경영연구 (16:4), pp. 69-87 https://doi.org/10.15813/kmr.2015.16.4.005
  10. 최준연, 이석기, 조영빈 2013. "추천 시스템의 예측 정확도 향상을 위한 고객 평가정보의 신뢰도 활용법," 한국콘텐츠학회논문지 (13:7), pp. 379-385. https://doi.org/10.5392/JKCA.2013.13.07.379
  11. 현윤진, 한희준, 최희석, 박준형, 이규하, 곽기영, 김남규 2013. "텍스트 분석을 활용한 국가 현안 대응 R&D 정보 패키징 방법론," Journal of Information Technology Applications & Management (20:3), pp. 231-257.
  12. 현윤진, 김남규, 조윤호 2015. "토픽 분석을 활용한 관심 기반 고객 세분화 방법론," 정보기술연구 (22:1), pp. 77-93
  13. Adomavicius, G. and Tuzhilin, A. 2005. "Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions," IEEE transactions on knowledge and data engineering (17:6), pp. 734-749. https://doi.org/10.1109/TKDE.2005.99
  14. Bacos, Y. J. 1997. "The Emerging Role of Electronic Marketplace on the Internet," Communication of ACM (41:8), pp. 35-42. https://doi.org/10.1145/280324.280330
  15. Bakos, J.Y. 1997. "Reducing buyer search costs: implications for electronic marketplaces'', Management Science (43:12), pp. 1676-92. https://doi.org/10.1287/mnsc.43.12.1676
  16. Balabanovic, M. and Shoham, Y. 1997. "Fab: content-based, collaborative recommendation," Communications of the ACM (40:3), pp. 66-72. https://doi.org/10.1145/245108.245124
  17. Barragans-Martinez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-Lopez, M., Mikic-Fonte, F. A. and Peleteiro, A. 2010. "A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition," Information Sciences (180:22), pp. 4290-4311. https://doi.org/10.1016/j.ins.2010.07.024
  18. Billsus, D. and Pazzani, M. J. 1999. "A hybrid user model for news story classification," in UM99 User Modeling, pp. 99-108.
  19. Blei, D. M., & Lafferty, J. D. 2009. "Topic models," Text mining: classification, clustering, and applications (10:71), pp. 34.
  20. Bobadilla, J., Ortega, F., Hernando, A. and Gutierrez, A. 2013. "Recommender systems survey," Knowledge-based systems (46), pp. 109-132. https://doi.org/10.1016/j.knosys.2013.03.012
  21. Brynjolfsson, E., Hu, Y. and Simester, D. 2011. "Goodbye pareto principle, hello long tail: The effect of search costs on the concentration of product sales," Management Science (57:8), pp. 1373-1386. https://doi.org/10.1287/mnsc.1110.1371
  22. Burke, R. 2002. "Hybrid recommender systems: Survey and experiments," User modeling and user-adapted interaction (12:4), pp. 331-370. https://doi.org/10.1023/A:1021240730564
  23. Cho, Y. H. and Kim, J. K. 2004. "Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce," Expert systems with Applications (26:2), pp. 233-246. https://doi.org/10.1016/S0957-4174(03)00138-6
  24. Ding, Y., Li, X. and Orlowska, M. E. 2006. "Recency-based collaborative filtering," in Proceedings of the 17th Australasian Database Conference (49), pp. 99-107.
  25. Griffiths, T. L. and Steyvers, M. 2004. "Finding scientific topics," in Proceedings of the National academy of Sciences (101:1), pp. 5228-5235. https://doi.org/10.1073/pnas.0307752101
  26. Haucap, J. and Heimeshoff, U. 2014. "Google, Facebook, Amazon, eBay: Is the Internet driving competition or market monopolization?," International Economics and Economic Policy (11:1), pp. 49-61. https://doi.org/10.1007/s10368-013-0247-6
  27. Herlocker, J. L., Konstan, J. A., Terveen, L. G. and Riedl, J. T. 2004. "Evaluating collaborative filtering recommender systems," ACM Transactions on Information Systems (TOIS) (22:1), pp. 5-53. https://doi.org/10.1145/963770.963772
  28. Hofmann, T. 1999. "Probabilistic latent semantic indexing," in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 50-57.
  29. Huang Z, Chen H, Zeng D. 2004. "Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering," ACM Transactions on Information Systems (TOIS) (22:1), pp.116-142. https://doi.org/10.1145/963770.963775
  30. Li, L., Zheng, L., Yang, F. and Li, T. 2014. "Modeling and Broadening Temporal User Interest in Personalized News Recommendation," Expert Systems with Applications (14:7), pp. 3168-3177.
  31. Lopez, V., del Rio, S., Benitez, J. M. and Herrera, F. 2015. "Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data," Fuzzy Sets and Systems (258), pp. 5-38. https://doi.org/10.1016/j.fss.2014.01.015
  32. Merve, A . and Arslan, A. 2009. "A collaborative filtering method based on artificial immune network", Expert Systems with Applications (36:4), pp. 8324-8332. https://doi.org/10.1016/j.eswa.2008.10.029
  33. Mimno, D., Wallach, H. and McCallum, A. 2008. "Gibbs sampling for logistic normal topic models with graph-based priors," In NIPS Workshop on Analyzing Graphs, pp.1-8.
  34. Moon, H. S., Yoon, J. H., Choi, I. Y., Kim, J. K. 2017. "An Exploratory Study of Collaborative Filtering Techniques to Analyze the Effect of Information Amount," Asia Pacific Journal of Information Systems (27:2), pp. 126-138. https://doi.org/10.14329/apjis.2017.27.2.126
  35. Park, C.H. and Kim, Y.G. 2003. "Identifying key factors affecting consumer purchase behavior in an online shopping context," International Journal of Retail & Distribution Management (31:1), pp. 16-29 https://doi.org/10.1108/09590550310457818
  36. Pazzani, M.J. and Billsus, D. 2007. "Contentbased Recommendation Systems", in The adaptive web, P. Brusilovsky, A. Kobsa, and W. Nejdl (eds.), Berlin:Springer, pp. 325-341.
  37. Peterson, R.A., Balasubramanian, S. and Bronnenberg, B.J. 1997. "Exploring the implications of the Internet for consumer marketing", Journal of the Academy of Management Science (25:4), pp. 329-346. https://doi.org/10.1177/0092070397254005
  38. Ricci, F., Rokach, L. and Shapira B. 2011. Introduction to recommender systems handbook, MA: Springer US.
  39. Salton, G. and Buckley, C. 1988. "Termweighting approaches in automatic text retrieval," Information processing & management (24:5), pp. 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
  40. Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. 2001. "Item-based collaborative filtering recommendation algorithms, " in Proceedings of the 10th International Conference on World Wide Web, pp. 285-295.
  41. Sheydaei, N., Saraee, M. and Shahgholian, A. 2015. "A novel feature selection method for text classification using association rules and clustering," Journal of Information Science (41:1), pp. 3-15. https://doi.org/10.1177/0165551514550143
  42. Song, M. and Kim, S. Y. 2013. "Detecting the knowledge structure of bioinformatics by mining full-text collections," Scientometrics (96:1), pp. 183-201. https://doi.org/10.1007/s11192-012-0900-9
  43. Sugiyama, K., Hatano, K. and Yoshikawa, M. 2004. "Adaptive web search based on user profile constructed without any effort from users," in Proceedings of the 13th international conference on World Wide Web, pp. 675-684.
  44. Wilson, J., Chaudhury, S. and Lall, B. 2014. "Improving collaborative filtering based recommenders using topic modelling," in Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 340-346.
  45. Wu, Y. H., and Chen, A. L. 2000. "Index structures of user profiles for efficient web page filtering services," in Proceedings of the 20th International Conference on Distributed Computing Systems , pp. 644-651.
  46. Xin, J., Wang, Z., Qu, L. and Wang, G. 2015. "Elastic extreme learning machine for big data classification," Neurocomputing (149), pp. 464-471. https://doi.org/10.1016/j.neucom.2013.09.075
  47. Zhang, Z., Lin, H., Liu, K., Wu, D., Zhang, G. and Lu, J. 2013. "A hybrid fuzzy-based personalized recommender system for telecom products/services," Information Sciences (236), pp. 117-129.
  48. Zhou, X. and Wu, S. 2016. "Rating LDA model for collaborative filtering," Knowledge-Based Systems (110), pp. 135-143.