DOI QR코드

DOI QR Code

빅데이터 분석 교육의 문제점과 개선 방안 -학생 과제 보고서를 중심으로

Problems of Big Data Analysis Education and Their Solutions

  • Choi, Do-Sik (School of General Studies, Kangwon National University)
  • 투고 : 2017.10.11
  • 심사 : 2017.12.20
  • 발행 : 2017.12.28

초록

본 논문은 빅데이터 분석 교육의 문제점을 고찰해 그 개선 방안을 제시한다. 빅데이터의 특성은 V3에서 V5로 진화하고 있다. 이에 빅데이터 분석 교육도 V5를 감안한 데이터 분석 교육이 되어야 한다. 작금 불확실성의 증대는 데이터 분석의 리스크를 증가시키기에 내적 외적 구조화/비구조화 데이터를 비롯해 교란 요인마저 분석할 때 데이터의 신뢰성은 증가될 수 있다. 그리고 평판분석을 활용할 때 범하기 쉬운 오류가 가변성과 불확실성에 대한 상황 인식이다. 가변성의 측면을 고려해, 다양한 변수와 옵션에 의한 불확실성의 상황을 인식하고 대비한 데이터 분석이 이뤄질 때 데이터에 대한 신뢰성과 정확성은 증가할 수 있다. 사회관계망 분석에서 학생들과 일반 연구자들이 주로 활용하는 것이 텍스톰과 노드엑셀의 노드 분석이다. 사화관계망 분석은 매개중심성에 의한 상황 분석을 통해 다크 데이터를 찾아 이상 현상을 감지하고 현 상황을 분석하여 유용한 의미를 얻고 미래를 예측할 수 있어야 한다.

키워드

빅데이터 분석;융합 교육;가변성;정확성;교란 요인;평판분석;사회관계망 분석

참고문헌

  1. Makoto Shirota, Big Data No Shougeki, S. J. Kim Trans, Hanbit Miedia, p.27, 2013.
  2. McKinsey, McKinsey Global Institute-Big data : The next frontier for innovation․competition and productivity, McKinsey & Company, p.1, 2011.6.
  3. Makoto Shirota, Big Data No Shougeki, Sung-jae Kim Trans, Hanbit Miedia, p.26, 2013.
  4. S. R. Kim, M. M. Kang, "Big Data Analysis Technology Today and Future", Communications of the Korean Institute of Information Scientists and Engineers Vol. 32, No. 1, p.8, 2014.
  5. Y. G. Ham, S. B. Chae, Changing Big Date Management, Samsung Economic Research Institute, pp.29-32, 2012.
  6. M. M. Kang, S. R. Kim, S. M. Park, "Analysis and Utilization of Big Data", Communications of the Korean Institute of Information Scientists and Engineers Vol. 30, No. 6, pp.25-26, 2012.
  7. Y. S. Lee, J. W. Cho, "Study on Educational Utilization Methods of Big Data", Korea Academy Industrial Cooperation Society Vol. 17, No. 12, p.717, 2016.
  8. http://news.joins.com/article/20588571
  9. Christian Ruddr, DATACLYSM, G. Y. Lee Trans, Publishing DARUN, p.128, 2015.
  10. Viktor Mauer-Schonberger and Kenneth Neil Cukier, BIG DATA: A Revolution That Will Transform How We Live, Work, and Think, Book21 Publishing Group, p.107, 2013.
  11. D. W. Kim, H. S. Do, H. N. Seo, J. H. Son, "BIg Date World Reading", Course Report of First Semester 2015, Kangwon National University, 2015.
  12. Y. M. Hwang, J. T. Park, I. Y. Moon, K. S. Kim, O. Y. Kwon, "The Box-office Success Factors of Films Utilizing Big Data-Focus on Laugh and Tear of Film Factors", Journal of the Korea Institute of Information and Communication Engineering Vol. 20, No. 6, 2016.
  13. M. M. Kang, S. R. Kim, S. M. Park, "Analysis and Utilization of Big Data", Communications of the Korean Institute of Information Scientists and Engineers Vol. 30, No. 6, p.26, 2012.
  14. S. R. Kim, M. M. Kang, "Big Data Analysis Technology Today and Future", Communications of the Korean Institute of Information Scientists and Engineers Vol. 32, No. 1, p.26, 2014.
  15. K. T. Gang, T. E. Kim, H. G. Kim, G. H. Namgung, "BIg Date World Reading", Course Report of Second Semester 2015, Kangwon National University, 2015.
  16. Y. J. Park, "The Study of 'Classical Music' as Reflected in Bigdata: The Concepts, Musicians, and Opinions", Journal of Music Education Science Vol. 19, 2014.
  17. Viktor Mauer-Schonberger and Kenneth Neil Cukier, BIG DATA: A Revolution That Will Transform How We Live, Work, and Think, Book21 Publishing Group, pp.29-30, 2013.
  18. K. H. Choi, J. A. Yoo, "A rewiews on the social network analysis using R", Journal of the Korea Convergence Society Vol. 6. No.1, p.78, 2015.
  19. S. S. Shin, Y. J. Kim, J. Y. Jeong, "BIg Date World Reading", Course Report of Second Semester 2015, Kangwon National University, 2015.
  20. J. M. Lee, E. J. Jun, J. M. Chae, "Big Data Analysis for Dance Studies Using Text Mining", The Journal of Dance Society for Documentation & History Vol. 42, The Society for Dance Documentation&History, 2016.