DOI QR코드

DOI QR Code

Impact of Meteorological Initial Input Data on WRF Simulation - Comparison of ERA-Interim and FNL Data

초기 입력 자료에 따른 WRF 기상장 모의 결과 차이 - ERA-Interim과 FNL자료의 비교

  • Mun, Jeonghyeok (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Hwa Woon (Department of Atmospheric Sciences, Pusan National University) ;
  • Jeon, Wonbae (Institute of Environment Studies, Pusan National University) ;
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University)
  • 문정혁 (부산대학교 지구환경시스템학부) ;
  • 이화운 (부산대학교 대기환경과학과) ;
  • 전원배 (부산대학교 환경연구원) ;
  • 이순환 (부산대학교 지구과학교육과)
  • Received : 2017.09.05
  • Accepted : 2017.11.10
  • Published : 2017.12.31

Abstract

In this study, we investigated the impact of different initial data on atmospheric modeling results using the Weather Research and Forecast (WRF) model. Four WRF simulations were conducted with different initialization in March 2015, which showed the highest monthly mean $PM_{10}$ concentration in the recent ten years (2006-2015). The results of WRF simulations using NCEP-FNL and ERA-Interim were compared with observed surface temperature and wind speed data, and the difference of grid nudging effect on WRF simulation between the two data were also analyzed. The FNL simulation showed better accuracy in the simulated temperature and wind speed than the Interim simulation, and the difference was clear in the coastal area. The grid nudging effect on the Interim simulation was larger than that of the FNL simulation. Despite of the higher spatial resolution of ERA-Interim data compared to NCEP-FNL data, the Interim simulation showed slightly worse accuracy than those of the FNL simulation. It was due to uncertainties associated with the Sea Surface Temperature (SST) field in the ERA-Interim data. The results from the Interim simulation with different SST data showed significantly improved accuracy than the standard Interim simulation. It means that the SST field in the ERA-Interim data need to be optimized for the better WRF simulation. In conclusion, although the WRF simulation with ERA-Interim data does not show reasonable accuracy compared to those with NCEP-FNL data, it would be able to be Improved by optimizing the SST variable.

Keywords

ERA-Interim;NCEP-FNL;Grid nudging;Air quality modeling;WRF

Acknowledgement

Supported by : 부산대학교

References

  1. Bae, H. J., 2014, Effects of short-term exposure to $PM_{10}$ and $PM_{2.5}$ on mortality in Seoul, J. Environ. Health Sci., 40, 346-354.
  2. Carvalho, D., Rocha, A., Gomez-Gesteira, M., Silva Santos, C., 2014, WRF wind simulation and wind energy production estimates forced by different reanalyses: comparison with observed data for Portugal, Appl. Energy, 117, 116-126. https://doi.org/10.1016/j.apenergy.2013.12.001
  3. Choi, H. J., Lee, H. W., Sung, K., Kim, M. J., 2009, The effect of atmospheric flow field according to the radius influence and nudging coefficient of the objective analysis on complex area, J. Environ. Sci., 18(3), 271-281.
  4. Choi, H. J., Lee, H. W., Jeon, W. B., Lee, S. H., 2012, The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing, Atmos. Environ., 46, 554-567. https://doi.org/10.1016/j.atmosenv.2011.06.068
  5. Choi, J. W., Lee, J. G., 2015, A Sensitivity study of WRF model simulations to nudging methods for a Yeongdong heavy snowfall event, Atmosphere, 25(1), 99-115. https://doi.org/10.14191/Atmos.2015.25.1.099
  6. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, C., Tavolato, C., Thepaut, J. N., Vitart, F., 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  7. Dong, Y., Li, G., Yuan, M., Xie, X., 2017, Evaluation of five grid datasets against radiosonde data over the eastern and downstream regions of the Tibetan plateau in summer, Atmosphere, 8(3), 56. https://doi.org/10.3390/atmos8030056
  8. Heo, K. Y., Ha, T., Choi, J. Y., Park, K. S., Kwon, J. I., Jun, K., 2017, Evaluation of wind and wave simulations using different global reanalyses, J. Coast. Res., 79(sp1), 99-103. https://doi.org/10.2112/SI79-021.1
  9. Hodges, K. I., Lee, R. W., Bengtsson, L., 2011, A Comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25, J. Climate, 24(18), 4888-4906. https://doi.org/10.1175/2011JCLI4097.1
  10. Jeon, W. B., Choi, Y. S., Lee, H. W., Lee, S. H., Yoo, J. W., Park, J. H., Lee, H. J., 2015, A Quantitative analysis of grid nudging effect on each process of $PM_{2.5}$ production in the Korean Peninsula, Atmos. Environ., 122, 763-774. https://doi.org/10.1016/j.atmosenv.2015.10.050
  11. Jeon, W. B., Choi, Y., Percell, P., Souri, A. H., Song, C. K., Kim, S. T., Kim, J., 2016. Computationally efficient air quality forecasting tool: implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust, Geosci. Model Dev., 9, 3671-3684. https://doi.org/10.5194/gmd-9-3671-2016
  12. Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H., Leem, H. H., 2009, Numerical study on the impact of SST spacial distribution on regional circulation, J. Korean Soc. Atmos. Environ., 25(4), 304-315. https://doi.org/10.5572/KOSAE.2009.25.4.304
  13. Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H. J., Kim, D. H., Park, S. Y., 2011, Numerical study on the impact of meteorological input data on air quality modeling on high ozone episode at coastal region, J. Korean Soc. Atmos. Environ., 27(1), 30-40. https://doi.org/10.5572/KOSAE.2011.27.1.030
  14. Jeon, W. B., Lee, S. H., Lee, H., Park, C., Kim, D. H., Park, S. Y., 2014, A Study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninusla, Atmos. Environ., 89, 10-21. https://doi.org/10.1016/j.atmosenv.2014.02.005
  15. Jeong, J. H., Oh, I., Kang, Y. H., Bang, J. H., An, H., Seok, H. B., Kim, Y. K., Hong, J., Kim, J., 2016, WRF modeling approach for improvement of air quality modeling in the Seoul metropolitan region: seasonal sensitivity analysis of the WRF physics options, J. Environ. Sci., 25(1), 67-83.
  16. Jeong, J. H., Kim, Y. K., 2009, The application of high-resolution land cover and its effects on near-surface meteorological fields in two different coastal areas, J. Korean Soc. Atmos. Environ., 25(5), 432-449. https://doi.org/10.5572/KOSAE.2009.25.5.432
  17. Jo, E. J., Lee, W. S., Jo, H. Y., Kim, C. H., Eom, J. S., Mok, J. H., Kim, M. H., Lee, K., Kim, K. U., Lee, M. K., Park, H. K., 2017, Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea, Resp. Med., 124, 79-87. https://doi.org/10.1016/j.rmed.2017.02.010
  18. Kim, T., Jeong, J. H., Kim, Y. K., 2016, Sensitivity analysis of the WRF model according to the impact of nudging for improvement of ozone prediction, J. Environ. Sci. Int., 25(5), 683-694. https://doi.org/10.5322/JESI.2016.25.5.683
  19. Lee, S. H., Lee, H. W., Kim, Y. K., Jeon, W. B., Choi, H. J., Kim, D. H., 2011, Impact of continuously varied SST on land-sea breezes and ozone concentration over south-western coast of Korea, Atmos. Environ., 45, 6439-6450. https://doi.org/10.1016/j.atmosenv.2011.07.059
  20. Lee, H. M., Lee, H. W., Lee, S. H., 2010, Numerical simulation and comparison of particle dispersion and air quality with domain setting of Gwangyang bay area, J. Korean Soc. Atmos. Environ., 26(6), 591-605. https://doi.org/10.5572/KOSAE.2010.26.6.591
  21. Lee, H. W., Jeon, W., Lee, S. H., Choi, H., 2008, Analysis of numerical meteorological fields due to the detailed surface data in complex coastal area, J. Korean Soc. Atmos. Environ., 24(6), 649-661. https://doi.org/10.5572/KOSAE.2008.24.6.649
  22. Lee, H. W., Cha, Y. M., Lee, S. H., Kim, D. H., 2010, Impact of high-resolution sea surface temperatures on the simulated wind resources in the southeastern coast of the Korean Peninsula. J. Environ. Sci. Int., 19, 171-184. https://doi.org/10.5322/JES.2010.19.2.171
  23. Mooney, P. A., Mulligan, F. J., Fealy, R., 2011, Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland, Int. J. Climatol., 31(4), 545-557. https://doi.org/10.1002/joc.2098
  24. Srivastava, P. K., Han, D., Rico Ramirez, M. A., Islam, T., 2013, Comparative assessment of evapotranspiration derived from NCEP and ECMWF global datasets through weather research and forecasting model, Atmos. Sci. Lett., 14(2), 118-125. https://doi.org/10.1002/asl2.427
  25. WHO Regional Office for Europe, 2013, Review of evidence on health aspects of air pollution REVIHAAP project: final technical report.
  26. Xie, J., Zhu, J., Li, Y., 2008, Assessment and inter-comparison of five high-resolution sea surface temperature products in the shelf and coastal seas around China. Cont. Shelf Res., 28, 1286-1293. https://doi.org/10.1016/j.csr.2008.02.020
  27. Zhu, J. H., Ma, S. P., Zou, H., Zhou, L. B., Li, P., 2014, Evaluation of reanalysis products with in situ GPS sounding observations in the eastern Himalayas, Atmos. Oceanic Sci. Lett., 7(1), 17-22. https://doi.org/10.1080/16742834.2014.11447129