Characteristics of Activated Carbon Prepared from Waste Citrus Peel by KOH Activation

KOH 활성화법으로 제조한 폐감귤박 활성탄의 특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Kang, Kyung-Ho (Livestock Division, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • 감상규 (제주대학교 환경공학과) ;
  • 강경호 (제주특별자치도 축산과) ;
  • 이민규 (부경대학교 화학공학과)
  • Received : 2017.07.31
  • Accepted : 2017.09.19
  • Published : 2017.12.10


An activated carbon was prepared from waste citrus peel produced in large amounts in Jeju Island, Korea, using KOH activation and its characteristics was examined. Under the condition of the KOH ratio between 100 and 300%, activation temperature from 400 to $900^{\circ}C$ and activation time from 0.5 to 1.5 h, the iodine adsorptivity of the activated carbon prepared increased but the yield decreased with respect to the increase of each conditions. The iodine adsorptivity and yield of the activated carbon prepared at the activation time of more than 1.5 h were similar to those of using 1.5 h. In addition, as the KOH ratio increased, the specific surface area and pore volume of the activated carbon increased, but the pore diameter decreased. The activated carbon has an average pore diameter of $20{\sim}25{\AA}$. Also, the activated carbon prepared at 300% KOH and $900^{\circ}C$ for 1.5 h has the highest specific surface area of $1,527m^2/g$ and iodine adsorptivity of 1,246 mg/g.


activated carbon;waste citrus peel;KOH;iodine adsorptivity


  1. S. J. T. Pollard, G. D. Fowler, C. J. Sollars, and R. Perry, Low-cost adsorbents for waste and wastewater treatment: A review, Sci. Total Environ., 116, 31-52 (1992).
  2. M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004).
  3. M. M. Mohamed, Acid dye removal: Comparison of surfactant modified mesoporous FSM-16 with activated carbon derived from rice husk, J. Colloid Int. Sci., 272, 28-34 (2004).
  4. B. H. Hameed, A. T. M. Din, and A. L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies, J. Hazard. Mater., 141, 819-825 (2007).
  5. N. Kannan and M. M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001).
  6. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surfacearea activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154, 337-346 (2008).
  7. C. A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., B135, 232-241 (2006).
  8. R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with $CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006).
  9. G. G. Stavropoulos and A. A. Zabaniotou, Production and characterization of activated carbons from olive-seed waste residue, Microporous Mesoporous Mater., 82, 79-85 (2005).
  10. A. A. Attia, B. S. Girgis, and N. A. Fathy, Removal of methylene blue by carbons derived from peach stones by $H_3PO_4$ activation: batch and column studies, Dyes Pigm., 76, 282-289 (2008).
  11. A. Aygun, S. Yenisoy-Karakas, and I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater., 66, 189-195 (2003).
  12. K. B. Chung, H. I. Ryu, S. H. Chang, J. C. Kim, and H. H. Kim, Preparation of activated carbon using a Pueraria Thunbergiana, J. Korean Ind. Eng. Chem., 12, 272-276 (2001).
  13. G. San Miguel, G. D. Fowler, and C. J. Sollars, A study of the characteristics of activated carbons produced by steam and carbon dioxide activation of waste tyre rubber, Carbon, 41, 1009-1016 (2003).
  14. K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007).
  15. K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by $ZnCl_2$, J. Environ. Sci. Int., 16, 1091-1098 (2007).
  16. A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34, 471-479 (1996).
  17. G. M. S. El-Shafei, I. M. A. El-Sherbiny, A. S. Darwish, and C. S. Philip, Silkworms' feces-based activated carbons as cheap adsorbents for removal of cadmium and methylene blue from aqueous solution, Chem. Eng. Res. Des., 92, 461-470 (2014).
  18. J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, and A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation, Carbon, 42, 1367-1370 (2004).
  19. H. H. Kim, J. M. Lee, and M. K. Chung, Preparation of activated carbon from sucrose by chemical activation, J. Korean Ind. Eng. Chem., 13, 156-161 (2002).
  20. J. M. Lee, A Study on the Preparation of Activated Carbon from Pepper-seed, Master Thesis, Sunmoon University, Korea (2002).
  21. H. H. Kim, J. M. Lee, and M. K. Ghung, Preparation of activated carbons from rice hull by NaOH and KOH activation, J. Korean Ind. Eng. Chem., 14, 381-385 (2003).
  22. J. A. Macia-Agullo, B. C. Moore, D. Cazorla-Amoros, and A. Linares-Solano, Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH, Microporous Mesoporous Mater., 101, 397-405 (2007).
  23. V. Fierro, V. Torne-Fernandez, and A. Celzard, Methodical study of the chemical activation of Kraft lignin with KOH and NaOH, Microporous Mesoporous Mater., 101, 419-431 (2007).
  24. H. Marsh, D. Crawford, T. M. O'Grady, and A. Wennerberg, Carbons of high surface area. A study by adsorption and high resolution electron microscopy, Carbon, 20, 419-426 (1982).
  25. S. C. Kim and I. K. Hong, Manufacturing and physical properties of coal based activated carbon, J. Korean Soc. Environ. Eng., 20, 745-754 (1998).
  26. S. W. Lee, J. C. Moon, C. H. Lee, D. C. Ryu, D. H. Choi, B. S. Ryu, and S. K. Song, Analysis of pore characteristics between commercial activated carbons and domestic anthracite-based activated carbon, J. Korean Soc. Environ. Eng., 23, 1211-1218 (2001).
  27. T. Otawa, M. Yamada, R. Tanibata, M. Kawakami, E. F. Vansant, and R. Dewolfs, Gas Separation Technology, Elsevier, Amsterdam, Netherlands (1990).